Publication
Non-intrusive low-cost IoT-based hardware system for sustainable predictive maintenance of industrial pump systems
dc.contributor.author | Brito, Sergio | |
dc.contributor.author | Azinheira, Gonçalo | |
dc.contributor.author | Semião, Jorge | |
dc.contributor.author | Sousa, Nelson | |
dc.contributor.author | Pérez Litrán, Salvador | |
dc.date.accessioned | 2025-10-03T11:47:33Z | |
dc.date.available | 2025-10-03T11:47:33Z | |
dc.date.issued | 2025-07-21 | |
dc.description.abstract | Industrial maintenance has shifted from reactive repairs and calendar-based servicing toward data-driven predictive strategies. This paper presents a non-intrusive, low-cost IoT hardware platform for sustainable predictive maintenance of rotating machinery. The system integrates an ESP32-S3 sensor node that captures vibration (100 kHz) and temperature data, performs local logging, and communicates wirelessly. An automated spectral band segmentation framework is introduced, comparing equal-energy, linear-width, nonlinear, clustering, and peak-valley partitioning methods, followed by a weighted feature scheme that emphasizes high-value bands. Three unsupervised one-class classifiers-transformer autoencoders, GANomaly, and Isolation Forest-are evaluated on these weighted spectral features. Experiments conducted on a custom pump test bench with controlled anomaly severities demonstrate strong anomaly classification performance across multiple configurations, supported by detailed threshold-characterization metrics. | eng |
dc.description.sponsorship | 0085_ATTENTIA_5_E, (POCTEP) 2021–2027 | |
dc.identifier.doi | 10.3390/electronics14142913 | |
dc.identifier.issn | 2079-9292 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/27786 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | MDPI | |
dc.relation.ispartof | Electronics | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Predictive maintenance | |
dc.subject | IoT | |
dc.subject | Vibration analysis | |
dc.subject | Wireless sensor networks | |
dc.subject | Machine learning | |
dc.subject | Low-cost sensors | |
dc.subject | FFT | |
dc.subject | Anomaly detection | |
dc.title | Non-intrusive low-cost IoT-based hardware system for sustainable predictive maintenance of industrial pump systems | eng |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.issue | 14 | |
oaire.citation.startPage | 2913 | |
oaire.citation.title | Electronics | |
oaire.citation.volume | 14 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Brito | |
person.familyName | Azinheira | |
person.familyName | Semião | |
person.familyName | Sousa | |
person.givenName | Sergio | |
person.givenName | Gonçalo | |
person.givenName | Jorge | |
person.givenName | Nelson | |
person.identifier | 3016271 | |
person.identifier | R-001-F67 | |
person.identifier.ciencia-id | B616-9C41-C169 | |
person.identifier.ciencia-id | 8C16-E46C-4C86 | |
person.identifier.orcid | 0009-0008-7287-0431 | |
person.identifier.orcid | 0000-0002-3139-2081 | |
person.identifier.orcid | 0000-0002-7667-7910 | |
person.identifier.orcid | 0000-0001-5205-8608 | |
person.identifier.rid | L-6700-2015 | |
person.identifier.scopus-author-id | 15924042200 | |
person.identifier.scopus-author-id | 57198012719 | |
relation.isAuthorOfPublication | 458c5d10-4804-434b-a2a7-8d1d3ce16034 | |
relation.isAuthorOfPublication | 6d4a399a-3824-435b-b680-2cc2539440eb | |
relation.isAuthorOfPublication | 12454e89-e25e-4e96-8b64-39974f6fba07 | |
relation.isAuthorOfPublication | 2c4c30ce-220e-4381-9462-41c35985071d | |
relation.isAuthorOfPublication.latestForDiscovery | 12454e89-e25e-4e96-8b64-39974f6fba07 |