Publication
On a 3D-hypersingular equation of a problem for a crack
dc.contributor.author | Samko, Stefan | |
dc.date.accessioned | 2018-12-07T14:53:44Z | |
dc.date.available | 2018-12-07T14:53:44Z | |
dc.date.issued | 2011-03 | |
dc.description.abstract | We show that a certain axisymmetric hypersingular integral equation arising in problems of cracks in the elasticity theory may be explicitly solved in the case where the crack occupies a plane circle. We give three different forms of the resolving formula. Two of them involve regular kernels, while the third one involves a singular kernel, but requires less regularity assumptions on the the right-hand side of the equation. | |
dc.description.sponsorship | Russian Federal Targeted Programme "Scientific and Research-Educational Personnel of Innovative Russia" [02.740.11.5024] | |
dc.identifier.doi | 10.2478/s13540-011-0003-y | |
dc.identifier.issn | 1311-0454 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/11661 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Versita | |
dc.title | On a 3D-hypersingular equation of a problem for a crack | |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 30 | |
oaire.citation.issue | 1 | |
oaire.citation.startPage | 19 | |
oaire.citation.title | Fractional Calculus and Applied Analysis | |
oaire.citation.volume | 14 | |
person.familyName | Samko | |
person.givenName | Stefan | |
person.identifier.orcid | 0000-0002-8022-2863 | |
person.identifier.rid | M-3726-2013 | |
person.identifier.scopus-author-id | 6603416048 | |
rcaap.rights | openAccess | |
rcaap.type | article | |
relation.isAuthorOfPublication | 7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4 | |
relation.isAuthorOfPublication.latestForDiscovery | 7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- [Fractional Calculus and Applied Analysis] Research paper on a 3d-hypersingular equation of a problem for a crack.pdf
- Size:
- 215.79 KB
- Format:
- Adobe Portable Document Format