Repository logo
 
Publication

TheslN-web algebras and dual canonical bases

dc.contributor.authorMackaay, Marco
dc.date.accessioned2021-02-15T15:40:12Z
dc.date.available2021-02-15T15:40:12Z
dc.date.issued2014
dc.description.abstractIn this paper, which is a follow-up to [38], I define and study SIN-web algebras, for any N >= 2. For N = 2 these algebras are isomorphic to Khovanov's [22] arc algebras and for N = 3 they are Morita equivalent to the sl(3)-web algebras which I defined and studied together with Pan and Tubbenhauer [34]. The main result of this paper is that the SIN-web algebras are Morita equivalent to blocks of certain level-N cyclotomic KLR algebras, for which I use the categorified quantum skew Howe duality defined in [38]. Using this Morita equivalence and Brundan and Kleshchev's [4] work on cyclotomic KLR-algebras, I show that there exists an isomorphism between a certain space of SIN-webs and the split Grothendieck group of the corresponding SIN-web algebra, which maps the dual canonical basis elements to the Grothendieck classes of the indecomposable projective modules (with a certain normalization of their grading).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.jalgebra.2014.02.036pt_PT
dc.identifier.issn0021-8693
dc.identifier.urihttp://hdl.handle.net/10400.1/15095
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherAcademic Presspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectCategorificationpt_PT
dc.subjectWebspt_PT
dc.subjectMatrix factorizationspt_PT
dc.subjectQuantum groupspt_PT
dc.titleTheslN-web algebras and dual canonical basespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage100pt_PT
oaire.citation.startPage54pt_PT
oaire.citation.titleJournal of Algebrapt_PT
oaire.citation.volume409pt_PT
person.familyNameMACKAAIJ
person.givenNameMARCO
person.identifier.ciencia-idF810-F5CB-9F35
person.identifier.orcid0000-0001-9807-6991
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication62310e63-1319-4bf3-87c8-1f6790d9f190
relation.isAuthorOfPublication.latestForDiscovery62310e63-1319-4bf3-87c8-1f6790d9f190

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1308.0566.pdf
Size:
433.83 KB
Format:
Adobe Portable Document Format