Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.5 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Dispersal behavior influences gene flow and the spatial distribution of genetic diversity, which is crucial for a species' evolutionary trajectory and population persistence under environmental changes. We used gene flow as a proxy to investigate dispersal patterns in the grayfoot chacma baboon (Papio ursinus griseipes) in Gorongosa National Park (GNP), central Mozambique. The baboons inhabit a mosaic landscape with a seasonally variable environment. Thirty-two years ago, GNP was the epicenter of a major war that severely reduced apex predators, resulting in limited mammalian predation on baboons. We aimed to characterize genetic diversity, examine the extent and direction of sex-biased gene flow at different time frames and investigate changes in population size and recent migration events. We collected 121 non-invasive DNA samples and analyzed uni- and bi-parentally inherited markers, comprising mitochondrial DNA, autosomal and Y-linked microsatellites, at two geographic locations (GNP and Catap & uacute; Forest Reserve) 150 km apart. We observed high genetic diversity and no evidence of a recent population decline. We identified six mitochondrial haplotypes, including a genetically distinct one in Catapu Forest Reserve. We found molecular evidence for historical and current male-mediated gene flow and female philopatry. Our results highlight the resilience of dispersal patterns in Papio sp. in diverse and seasonally variable ecosystems which have been disturbed by anthropogenic activities.
Description
Keywords
Male-biased dispersal Southern Africa Zambezi River Warfare Behavioral fexibility
Citation
Publisher
Springer