Repository logo
 
Publication

Maximal operator in variable exponent generalized morrey spaces on quasi-metric measure space

dc.contributor.authorGuliyev, Vagif S.
dc.contributor.authorSamko, Stefan
dc.date.accessioned2017-04-07T15:56:34Z
dc.date.available2017-04-07T15:56:34Z
dc.date.issued2016-07
dc.description.abstractWe consider generalized Morrey spaces on quasi-metric measure spaces , in general unbounded, with variable exponent p(x) and a general function defining the Morrey-type norm. No linear structure of the underlying space X is assumed. The admission of unbounded X generates problems known in variable exponent analysis. We prove the boundedness results for maximal operator known earlier only for the case of bounded sets X. The conditions for the boundedness are given in terms of the so called supremal inequalities imposed on the function , which are weaker than Zygmund-type integral inequalities often used for characterization of admissible functions . Our conditions do not suppose any assumption on monotonicity of in r.
dc.description.sponsorshipTUBITAK BIDEB Project No.: B.14.2.TBT.0.06.01.03.220.01-29104
dc.identifier.doi10.1007/s00009-015-0561-z
dc.identifier.issn1660-5446
dc.identifier.urihttp://hdl.handle.net/10400.1/9458
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Verlag
dc.relation.isbasedonWOS:000378820200018
dc.titleMaximal operator in variable exponent generalized morrey spaces on quasi-metric measure space
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage1165
oaire.citation.issue3
oaire.citation.startPage1151
oaire.citation.titleMediterranean Journal of Mathematics
oaire.citation.volume13
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9458.pdf
Size:
614.09 KB
Format:
Adobe Portable Document Format