Repository logo
 
Publication

Applying bacterial memetic algorithm for training feedforward and fuzzy flip-flop based neural networks

dc.contributor.authorGál, László
dc.contributor.authorBotzheim, J.
dc.contributor.authorKóczy, László T.
dc.contributor.authorRuano, Antonio
dc.date.accessioned2013-01-30T14:16:19Z
dc.date.available2013-01-30T14:16:19Z
dc.date.issued2009
dc.date.updated2013-01-26T17:11:19Z
dc.description.abstractIn our previous work we proposed some extensions of the Levenberg-Marquardt algorithm; the Bacterial Memetic Algorithm and the Bacterial Memetic Algorithm with Modified Operator Execution Order for fuzzy rule base extraction from inputoutput data. Furthermore, we have investigated fuzzy flip-flop based feedforward neural networks. In this paper we introduce the adaptation of the Bacterial Memetic Algorithm with Modified Operator Execution Order for training feedforward and fuzzy flipflop based neural networks. We found that training these types of neural networks with the adaptation of the method we had used to train fuzzy rule bases had advantages over the conventional earlier methods.por
dc.identifier.citationGál, László; Botzheim, Janos; Koczy, Laszlo T.; Ruano, A. E. Applying Bacterial Memetic Algorithm for Training Feedforward and Fuzzy Flip-Flop based Neural Networks, Trabalho apresentado em Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, In Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, 2009.por
dc.identifier.isbn978-989-95079-6-8
dc.identifier.otherAUT: ARU00698;
dc.identifier.urihttp://hdl.handle.net/10400.1/2143
dc.language.isoengpor
dc.peerreviewedyespor
dc.subjectBacterial Memetic Algorithmpor
dc.subjectFuzzy Flip-Floppor
dc.subjectLevenberg-Marquardt methodpor
dc.subjectNeural Networkpor
dc.titleApplying bacterial memetic algorithm for training feedforward and fuzzy flip-flop based neural networkspor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceLisbonpor
oaire.citation.endPage1838por
oaire.citation.startPage1833por
oaire.citation.titleJoint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conferencepor
person.familyNameRuano
person.givenNameAntonio
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id7004284159
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery13813664-b68b-40aa-97a9-91481a31ebf2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
tema_1833.pdf
Size:
154.86 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: