Logo do repositório
 
A carregar...
Miniatura
Publicação

The classical Kelvin-Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
Antontsev_2021_Nonlinearity_34_3083.pdf955.52 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

The classical Kelvin-Voigt equations for incompressible fluids with non-constant density are investigated in this work. To the associated initial-value problem endowed with zero Dirichlet conditions on the assumed Lipschitz-continuous boundary, we prove the existence of weak solutions: velocity and density. We also prove the existence of a unique pressure. These results are valid for d is an element of {2, 3, 4}. In particular, if d is an element of {2, 3}, the regularity of the velocity and density is improved so that their uniqueness can be shown. In particular, the dependence of the regularity of the solutions on the smoothness of the given data of the problem is established.

Descrição

Palavras-chave

Kelvin– Voigt equations Existence Regularity Uniqueness Incompressible fluids with non-constant density

Contexto Educativo

Citação

Projetos de investigação

Projeto de investigaçãoVer mais

Unidades organizacionais

Fascículo

Editora

IOP PUBLISHING LTD

Licença CC

Métricas Alternativas