Repository logo
 
Publication

Evolution problems of Navier-Stokes type with anisotropic diffusion

dc.contributor.authorAntontsev, S. N.
dc.contributor.authorde Oliveira, H. B.
dc.date.accessioned2017-04-07T15:56:08Z
dc.date.available2017-04-07T15:56:08Z
dc.date.issued2016-09
dc.description.abstractIn this work, we consider the evolutive problem for the incompressible Navier-Stokes equations with a general diffusion which can be fully anisotropic. The existence of weak solutions is proved for the associated initial problem supplemented with no-slip boundary conditions. We prove also the properties of extinction in a finite time, exponential time decay and power time decay. With this respect, we consider the important case of a forces fields with possible different behavior in distinct directions. Perturbations of the asymptotically stable equilibrium are established as well.
dc.identifier.doi10.1007/s13398-015-0262-2
dc.identifier.issn1578-7303
dc.identifier.otherAUT: HOL01377
dc.identifier.urihttp://hdl.handle.net/10400.1/9328
dc.language.isoeng
dc.peerreviewedyes
dc.relation.isbasedonWOS:000381578800029
dc.titleEvolution problems of Navier-Stokes type with anisotropic diffusion
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage754
oaire.citation.issue2
oaire.citation.startPage729
oaire.citation.titleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales
oaire.citation.volume110
person.familyNameBorges de Oliveira
person.givenNameHermenegildo
person.identifier.ciencia-id4A15-7156-6A00
person.identifier.orcid0000-0001-9053-8442
person.identifier.ridF-3186-2014
person.identifier.scopus-author-id7004475473
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication6f0df0e9-24bf-43d5-97b3-4a709a59e2b5
relation.isAuthorOfPublication.latestForDiscovery6f0df0e9-24bf-43d5-97b3-4a709a59e2b5

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
handle9328.pdf
Size:
475.85 KB
Format:
Adobe Portable Document Format