Repository logo
 
Publication

Optimized design of neural networks for a river water level prediction system

dc.contributor.authorLineros, Miriam López
dc.contributor.authorLuna, Antonio Madueño
dc.contributor.authorFerreira, Pedro M.
dc.contributor.authorRuano, Antonio
dc.date.accessioned2021-11-05T13:44:12Z
dc.date.available2021-11-05T13:44:12Z
dc.date.issued2021-10
dc.description.abstractIn this paper, a Multi-Objective Genetic Algorithm (MOGA) framework for the design of Artificial Neural Network (ANN) models is used to design 1-step-ahead prediction models of river water levels. The design procedure is a near-automatic method that, given the data at hand, can partition it into datasets and is able to determine a near-optimal model with the right topology and inputs, offering a good performance on unseen data, i.e., data not used for model design. An example using more than 11 years of water level data (593,178 samples) of the Carrión river collected at Villoldo gauge station shows that the MOGA framework can obtain low-complex models with excellent performance on unseen data, achieving an RMSE of 2.5 × 10−3 , which compares favorably with results obtained by alternative design.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/s21196504pt_PT
dc.identifier.eissn1424-8220
dc.identifier.urihttp://hdl.handle.net/10400.1/17287
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationAssociate Laboratory of Energy, Transports and Aeronautics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMulti-objective genetic algorithmpt_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectRiver stage datapt_PT
dc.titleOptimized design of neural networks for a river water level prediction systempt_PT
dc.title.alternativeDesign otimizado de redes neurais para um sistema de previsão do nível da água do riopt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aeronautics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50022%2F2020/PT
oaire.citation.issue19pt_PT
oaire.citation.startPage6504pt_PT
oaire.citation.titleSensorspt_PT
oaire.citation.volume21pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameRuano
person.givenNameAntonio
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id7004284159
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery13813664-b68b-40aa-97a9-91481a31ebf2
relation.isProjectOfPublication9df77b70-8231-47e7-9b34-c702e9c6021c
relation.isProjectOfPublication.latestForDiscovery9df77b70-8231-47e7-9b34-c702e9c6021c

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Optimized Design of Neural Networks.pdf
Size:
3.72 MB
Format:
Adobe Portable Document Format