Publication
Hybrid neural network based models for evapotranspiration prediction over limited weather parameters
dc.contributor.author | Vaz, Pedro J. | |
dc.contributor.author | Schutz, G. | |
dc.contributor.author | Guerrero, Carlos | |
dc.contributor.author | Cardoso, Pedro | |
dc.date.accessioned | 2023-02-15T10:50:59Z | |
dc.date.available | 2023-02-15T10:50:59Z | |
dc.date.issued | 2023-01 | |
dc.description.abstract | Evapotranspiration can be used to estimate the amount of water required by agriculture projects and green spaces, playing a key role in water management policies that combat the hydrological drought, which assumes a structural character in many countries. In this context, this work presents a study on reference evapotranspiration (ETo) estimation models, having as input a limited set of meteorological parameters, namely: temperature, humidity, and wind. Since solar radiation (SR) is an important parameter in the determination of ETo, SR estimation models are also developed. These ETo and SR estimation models compare the use of Artificial Neural Networks (ANN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), and hybrid neural network models such as LSTM-ANN, RNN-ANN, and GRU-ANN. Two main approaches were taken for ET(o )estimation: (i) directly use those algorithms to estimate ETo, and (ii) estimate solar radiation first and then use that estimation together with other meteorological parameters in a method that predicts ETo. For the latter case, two variants were implemented: the use of the estimated solar radiation as (ii.1) a feature of the neural network regressors, and (ii.2) the use of the Penman-Monteith method (a.k.a. FAO-56PM method, adopted by the United Nations Food and Agriculture Organization) to compute ETo, which has solar radiation as one of the input parameters. Using experimental data collected from a weather station (WS) located in Vale do Lobo (Portugal), the later approach achieved the best result with a coefficient of determination (R-2) of 0.977. The developed model was then applied to data from eleven stations located in Colorado (USA), with very distinct climatic conditions, showing similar results to the ones for which the models were initially designed ((R2) > 0.95), proving a good generalization. As a final notice, the reduced-set features were carefully selected so that they are compatible with free online weather forecast services. | pt_PT |
dc.description.sponsorship | ALG-01-0247-FEDER-047030 | |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1109/ACCESS.2022.3233301 | pt_PT |
dc.identifier.issn | 2169-3536 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/19087 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation | Laboratory of Robotics and Engineering Systems | |
dc.relation | Center for Electronics, Optoelectronics and Telecommunications | |
dc.relation | Center for Electronics, Optoelectronics and Telecommunications | |
dc.relation | Mediterranean Institute for Agriculture, Environment and Development | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Solar radiation | pt_PT |
dc.subject | Meteorology | pt_PT |
dc.subject | Crops | pt_PT |
dc.subject | Computational modeling | pt_PT |
dc.subject | Artificial neural networks | pt_PT |
dc.subject | Predictive models | pt_PT |
dc.subject | Irrigation | pt_PT |
dc.subject | Evapotranspiration | pt_PT |
dc.subject | Public garden | pt_PT |
dc.subject | Smart irrigation | pt_PT |
dc.subject | Solar radiation | pt_PT |
dc.title | Hybrid neural network based models for evapotranspiration prediction over limited weather parameters | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Laboratory of Robotics and Engineering Systems | |
oaire.awardTitle | Center for Electronics, Optoelectronics and Telecommunications | |
oaire.awardTitle | Center for Electronics, Optoelectronics and Telecommunications | |
oaire.awardTitle | Mediterranean Institute for Agriculture, Environment and Development | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50009%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00631%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00631%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05183%2F2020/PT | |
oaire.citation.endPage | 976 | pt_PT |
oaire.citation.startPage | 963 | pt_PT |
oaire.citation.title | IEEE Access | pt_PT |
oaire.citation.volume | 11 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Migueis Vaz Martins | |
person.familyName | Schütz | |
person.familyName | Guerrero | |
person.familyName | Cardoso | |
person.givenName | Pedro Jorge | |
person.givenName | Gabriela | |
person.givenName | Carlos | |
person.givenName | Pedro | |
person.identifier.ciencia-id | 341B-DE9D-AFC7 | |
person.identifier.ciencia-id | 821B-7ADF-B6DC | |
person.identifier.ciencia-id | 5F10-1C37-FE45 | |
person.identifier.orcid | 0000-0002-8819-3243 | |
person.identifier.orcid | 0000-0001-5081-3913 | |
person.identifier.orcid | 0000-0001-9907-8235 | |
person.identifier.orcid | 0000-0003-4803-7964 | |
person.identifier.rid | HKF-6445-2023 | |
person.identifier.rid | O-5305-2015 | |
person.identifier.rid | D-3485-2016 | |
person.identifier.rid | G-6405-2013 | |
person.identifier.scopus-author-id | 35254562000 | |
person.identifier.scopus-author-id | 24767767200 | |
person.identifier.scopus-author-id | 35602693500 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 41a140ef-1573-4bf7-9603-e5ad5e0aacdf | |
relation.isAuthorOfPublication | c026bf26-3cb8-4763-b87a-e7d68536c19e | |
relation.isAuthorOfPublication | 2997cb61-5519-4cc6-871c-169ec2e2e0a8 | |
relation.isAuthorOfPublication | 62bebc54-51ee-4e35-bcf5-6dd69efd09e0 | |
relation.isAuthorOfPublication.latestForDiscovery | c026bf26-3cb8-4763-b87a-e7d68536c19e | |
relation.isProjectOfPublication | 63f1f0ee-a2d4-4055-8a65-111048e05495 | |
relation.isProjectOfPublication | 6c1217d9-1340-45e8-91d8-e75348854f62 | |
relation.isProjectOfPublication | 77b70459-1e8c-4a6c-9856-58860aaddb6b | |
relation.isProjectOfPublication | 823bd652-ee6c-4479-91c5-06095bc37e9c | |
relation.isProjectOfPublication.latestForDiscovery | 6c1217d9-1340-45e8-91d8-e75348854f62 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Hybrid Neural Network Based Models for Evapotranspiration Prediction Over Limited Weather Parameters.pdf
- Size:
- 1.99 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.46 KB
- Format:
- Item-specific license agreed upon to submission
- Description: