Repository logo
 
Publication

BMO-VMO results for fractional integrals in variable exponent Morrey spaces

dc.contributor.authorRafeiro, Humberto
dc.contributor.authorSamko, Stefan
dc.date.accessioned2020-07-24T10:52:06Z
dc.date.available2020-07-24T10:52:06Z
dc.date.issued2019-07
dc.description.abstractWe prove the boundedness of the fractional integration operator of variable order alpha(x) in the limiting Sobolev case alpha(x)p(x) = n - lambda(x) from variable exponent Morrey spaces L-p(.),L-lambda(.) (Omega) into BMO (Omega), where Omega is a bounded open set. In the case alpha(x) (math) const, we also show the boundedness from variable exponent vanishing Morrey spaces VLp(.),lambda (.) (Omega) into VMO (Omega). The results seem to be new even when p and A are constant. (C) 2019 Elsevier Ltd. All rights reserved.
dc.description.sponsorshipResearch Start-up Grant of United Arab Emirates University, Al Ain, United Arab Emirates [G00002994]
dc.description.sponsorshipRussian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-01-00223]
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.na.2019.01.020
dc.identifier.issn0362-546X
dc.identifier.issn1873-5215
dc.identifier.urihttp://hdl.handle.net/10400.1/14315
dc.language.isoeng
dc.peerreviewedyes
dc.publisherPergamon-Elsevier Science Ltd
dc.subjectOperators
dc.titleBMO-VMO results for fractional integrals in variable exponent Morrey spaces
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage43
oaire.citation.startPage35
oaire.citation.titleNonlinear Analysis: Theory, Methods and Applications
oaire.citation.volume184
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0362546X1930029X-main.pdf
Size:
709.47 KB
Format:
Adobe Portable Document Format