Repository logo
 
Publication

Estimating fuzzy membership functions parameters by the levenberg-marquardt algorithm

dc.contributor.authorBotzheim, J.pt_PT
dc.contributor.authorCabrita, Cristiano Lourenço
dc.contributor.authorKóczy, László T.pt_PT
dc.contributor.authorRuano, Antonio
dc.date.accessioned2009-02-13T17:09:15Z
dc.date.available2009-02-13T17:09:15Z
dc.date.issued2008
dc.description.abstractIn previous papers from the authors fuzzy model identification methods were discussed. The bacterial algorithm for extracting fuzzy rule base from a training set was presented. The Levenberg-Marquardt algorithm was also proposed for determining membership functions in fuzzy systems. In this paper the Levenberg-Marquardt technique is improved to optimise the membership functions in the fuzzy rules without Ruspini-partition. The class of membership functions investigated is the trapezoidal one as it is general enough and widely used. The method can be easily extended to arbitrary piecewise linear functions as well.pt_PT
dc.formatapplication/pdfpt_PT
dc.identifier.citationInternational Joint Conference on Neural Networks and Fuzzy Systems. - Budapest, 25-29 July 2004. - 6 ppt_PT
dc.identifier.otherAUT: ARU00698; CCA01443;
dc.identifier.urihttp://hdl.handle.net/10400.1/49
dc.language.isoengpt_PT
dc.publisherBudapestpt_PT
dc.relation.urihttp://www.bib.ualg.pt/artigos/DocentesEST/CABEst.pdfpt_PT
dc.rights.urirestrictedAccessen
dc.subjectFUZZYpt_PT
dc.subjectControlo automáticopt_PT
dc.subjectRedes neuronaispt_PT
dc.subjectAlgoritmo de levenberg-marquardpt_PT
dc.subject681.5pt_PT
dc.titleEstimating fuzzy membership functions parameters by the levenberg-marquardt algorithmpt_PT
dc.typejournal article
dspace.entity.typePublication
person.familyNameCabrita
person.familyNameRuano
person.givenNameCristiano Lourenço
person.givenNameAntonio
person.identifier.ciencia-idFF1E-13A0-A269
person.identifier.orcid0000-0003-4946-0465
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id55958626100
person.identifier.scopus-author-id7004284159
rcaap.typearticlept_PT
relation.isAuthorOfPublication081b091f-c9fa-470a-9a28-51fe4c85864a
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery081b091f-c9fa-470a-9a28-51fe4c85864a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CABEst.pdf
Size:
520.05 KB
Format:
Adobe Portable Document Format