Repository logo
 
Publication

Extracting repetitive transients for rotating machinery diagnosis using multiscale clustered grey infogram

dc.contributor.authorLi, Chuan
dc.contributor.authorCabrera, Diego
dc.contributor.authorOliveira, José Valente de
dc.contributor.authorSanchez, Rene-Vinicio
dc.contributor.authorCerrada, Mariela
dc.contributor.authorZurita, Grover
dc.date.accessioned2017-04-07T15:56:21Z
dc.date.available2017-04-07T15:56:21Z
dc.date.issued2016-08
dc.description.abstractLocal faults of rotating machinery usually result in repetitive transients whose impulsiveness or cyclostationarity can be employed as faulty signatures. However, to simultaneously accommodate the impulsiveness and the cyclostationarity is a challenging task for rotating machinery diagnostics. Inspired by recently-reported infogram that is sensitive to either the impulsiveness or the cyclostationarity using spectral negentropy defined in time domain or frequency domain, a multiscale clustering grey infogram (MCGI) is proposed by combining both negentropies in a grey fashion using multiscale clustering. Fourier spectrum of the vibration signal is decomposed into multiple scales with different initial resolutions. In each scale, fine segments are grouped using hierarchical clustering. Meanwhile, both time-domain and frequency-domain spectral negentropies are taken into account to guide the clustering through grey evaluation of both negentropies. Numerical simulations and experimental tests are carried out for validating the proposed MCGI. For comparison, peer methods are applied to challenge different noises and interferences. The results show that, thanks to the multiscale clustering of the spectrum and the grey evaluation of both negentropies, the present MCGI is robust in extracting the repetitive transients for the rotating machinery diagnosis. (C) 2016 Elsevier Ltd. All rights reserved.
dc.description.sponsorshipProject of Chongqing Science & Technology Commission (cstc2015jcyjA70007, cstc2015jcyjA90003)
dc.identifier.doi10.1016/j.ymssp.2016.02.064
dc.identifier.issn0888-3270
dc.identifier.otherAUT: JVO01594;
dc.identifier.urihttp://hdl.handle.net/10400.1/9390
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relation.isbasedonWOS:000374812200010
dc.titleExtracting repetitive transients for rotating machinery diagnosis using multiscale clustered grey infogram
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage173
oaire.citation.startPage157
oaire.citation.titleMechanical Systems and Signal Processing
oaire.citation.volume76-77
person.familyNameLUÍS VALENTE DE OLIVEIRA
person.givenNameJOSÉ
person.identifier.ciencia-id1F12-C1D3-7717
person.identifier.orcid0000-0001-5337-5699
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublicationbb726e73-690c-4a33-822e-c47bdac3035b
relation.isAuthorOfPublication.latestForDiscoverybb726e73-690c-4a33-822e-c47bdac3035b

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
9390feito.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format