Repository logo
 
Publication

Model-based deep learning framework for accelerated optical projection tomography

dc.contributor.authorObando, Marcos
dc.contributor.authorBassi, Andrea
dc.contributor.authorDucros, Nicolas
dc.contributor.authorMato, Germán
dc.contributor.authorCorreia, Teresa
dc.date.accessioned2024-02-03T13:24:41Z
dc.date.available2024-02-03T13:24:41Z
dc.date.issued2023
dc.description.abstractIn this work, we propose a model-based deep learning reconstruction algorithm for optical projection tomography (ToMoDL), to greatly reduce acquisition and reconstruction times. The proposed method iterates over a data consistency step and an image domain artefact removal step achieved by a convolutional neural network. A preprocessing stage is also included to avoid potential misalignments between the sample center of rotation and the detector. The algorithm is trained using a database of wild-type zebrafish (Danio rerio) at different stages of development to minimise the mean square error for a fixed number of iterations. Using a cross-validation scheme, we compare the results to other reconstruction methods, such as filtered backprojection, compressed sensing and a direct deep learning method where the pseudo-inverse solution is corrected by a U-Net. The proposed method performs equally well or better than the alternatives. For a highly reduced number of projections, only the U-Net method provides images comparable to those obtained with ToMoDL. However, ToMoDL has a much better performance if the amount of data available for training is limited, given that the number of network trainable parameters is smaller.pt_PT
dc.description.sponsorshipLCF/PR/HR22/00533; Grant agreement no.101094250; WT 203148/Z/16/Zpt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1038/s41598-023-47650-3pt_PT
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10400.1/20365
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherNature Portfoliopt_PT
dc.relationAlgarve Centre for Marine Sciences
dc.relationAlgarve Centre for Marine Sciences
dc.relationCentre for Marine and Environmental Research
dc.relationOPTical Imaging of Molecular and signalling Activity in Real-time: application to flatfish metamorphosis
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectAlgorithmspt_PT
dc.titleModel-based deep learning framework for accelerated optical projection tomographypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleAlgarve Centre for Marine Sciences
oaire.awardTitleAlgarve Centre for Marine Sciences
oaire.awardTitleCentre for Marine and Environmental Research
oaire.awardTitleOPTical Imaging of Molecular and signalling Activity in Real-time: application to flatfish metamorphosis
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04326%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04326%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0101%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/867450/EU
oaire.citation.issue1pt_PT
oaire.citation.startPage21735pt_PT
oaire.citation.titleScientific Reportspt_PT
oaire.citation.volume13pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamH2020
person.familyNameCorreia
person.givenNameTeresa
person.identifier.ciencia-idF01E-082A-5B36
person.identifier.orcid0000-0002-1606-9550
person.identifier.scopus-author-id23392190500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication2217fb83-cb80-4f7b-b039-6476ddb910a5
relation.isAuthorOfPublication.latestForDiscovery2217fb83-cb80-4f7b-b039-6476ddb910a5
relation.isProjectOfPublicationfafa76a6-2cd2-4a6d-a3c9-772f34d3b91f
relation.isProjectOfPublication15f91d45-e070-47d8-b6b8-efd4de31d9a8
relation.isProjectOfPublication794d4c77-c731-471e-bc96-5a41dcd3d872
relation.isProjectOfPublication2e85e50f-5553-408f-8942-725f163ef157
relation.isProjectOfPublication.latestForDiscovery2e85e50f-5553-408f-8942-725f163ef157

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-023-47650-3.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: