Repository logo
 
Publication

A deep neural network video framework for monitoring elderly persons

dc.contributor.authorFarrajota, Miguel
dc.contributor.authorRodrigues, João
dc.contributor.authordu Buf, J. M. H.
dc.date.accessioned2017-04-07T15:57:23Z
dc.date.available2017-04-07T15:57:23Z
dc.date.issued2016
dc.description.abstractThe rapidly increasing population of elderly persons is a phenomenon which affects almost the entire world. Although there are many telecare systems that can be used to monitor senior persons, none integrates one key requirement: detection of abnormal behavior related to chronic or new ailments. This paper presents a framework based on deep neural networks for detecting and tracking people in known environments, using one or more cameras. Video frames are fed into a convolutional network, and faces and upper/full bodies are detected in a single forward pass through the network. Persons are recognized and tracked by using a Siamese network which compares faces and/or bodies in previous frames with those in the current frame. This allows the system to monitor the persons in the environment. By taking advantage of parallel processing of ConvNets with GPUs, the system runs in real time on a NVIDIA Titan board, performing all above tasks simultaneously. This framework provides the basic infrastructure for future pose inference and gait tracking, in order to detect abnormal behavior and, if necessary, to trigger timely assistance by caregivers.
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/978-3-319-40244-4_36
dc.identifier.isbn978-3-319-40244-4; 978-3-319-40243-7
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/10400.1/9697
dc.language.isoeng
dc.peerreviewedyes
dc.relation.isbasedonWOS:000389458400036
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA deep neural network video framework for monitoring elderly persons
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceToronto, Canadá
oaire.citation.endPage381
oaire.citation.startPage370
oaire.citation.titleUniversal Access in Human-Computer Interaction; Interaction Techniques and Environments, Pt II. Lecture Notes in Computer Science
oaire.citation.volume9738
person.familyNameFarrajota
person.familyNameRodrigues
person.familyNamedu Buf
person.givenNameMiguel
person.givenNameJoao
person.givenNameHans
person.identifier.ciencia-id8A19-98F7-9914
person.identifier.orcid0000-0001-7970-4649
person.identifier.orcid0000-0002-3562-6025
person.identifier.orcid0000-0002-4345-1237
person.identifier.ridM-5125-2013
person.identifier.scopus-author-id55807461600
person.identifier.scopus-author-id6604075916
rcaap.rightsopenAccess
rcaap.typearticle
relation.isAuthorOfPublicationca40db25-2109-4390-ad94-c5f28803c7e8
relation.isAuthorOfPublication683ba85b-459c-4789-a4ff-a4e2a904b295
relation.isAuthorOfPublicationcfad5636-2c77-4db0-a3a0-d7eb97ce6bee
relation.isAuthorOfPublication.latestForDiscoveryca40db25-2109-4390-ad94-c5f28803c7e8

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Farrajota2016_Chapter_ADeepNeuralNetworkVideoFramewo.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format

Collections