Repository logo
 
Publication

Improving energy efficiency in smart-houses by optimizing electrical loads management

dc.contributor.authorCabrita, Cristiano Lourenço
dc.contributor.authorMonteiro, Jânio
dc.contributor.authorCardoso, Pedro
dc.date.accessioned2020-07-24T10:53:07Z
dc.date.available2020-07-24T10:53:07Z
dc.date.issued2019
dc.description.abstractIn this work, the Genetic Algorithm is explored for solving a predictive based demand side management problem (a combinatorial optimization problem) and the main measures lbr performance evaluation are evaluated. In this context, we propose a smart energy scheduling approach for household appliances in real-time to achieve minimum consumption costs and a reduction in peak load. We consider a scenario of selfconsumption where the surplus from local power generation can be sold to the grid, and the existence of appliances that can be shiftable from peak hours to off-peak hours. Results confirm the importance of the tuning procedure and the structure of the genome and algorithm's operators determine the performance of such type of meta-heuristics. This fact is more decisive when there are several operational constraints on the system, as for example short-term optimal scheduling decision, time constraints and power limitations. Details about the scheduling problem, comparison strategies, metrics, and results are provided.
dc.description.sponsorshipEuropean Union under the FEDER (Fundo Europeu de Desenvolvimento Regional) programEuropean Union (EU) [0076_AGERAR_6_E]
dc.description.sponsorshipFCT, through IDMEC under LAETA [UID/EMS/50022/2019]
dc.identifier.isbn978-1-7281-3087-3
dc.identifier.urihttp://hdl.handle.net/10400.1/14452
dc.language.isoeng
dc.peerreviewedyes
dc.publisherIEEE
dc.subjectEnergy management
dc.subjectOptimization
dc.subjectEvolutionary computation
dc.subjectGenetic algorithms
dc.subjectLoad scheduling
dc.titleImproving energy efficiency in smart-houses by optimizing electrical loads management
dc.typeconference object
dspace.entity.typePublication
oaire.citation.title2019 1st International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED)
oaire.citation.titleCagliari, Italy
person.familyNameCabrita
person.familyNameMonteiro
person.familyNameCardoso
person.givenNameCristiano Lourenço
person.givenNameJânio
person.givenNamePedro
person.identifierR-001-H74
person.identifier.ciencia-idFF1E-13A0-A269
person.identifier.ciencia-idD019-1CF7-B156
person.identifier.ciencia-id5F10-1C37-FE45
person.identifier.orcid0000-0003-4946-0465
person.identifier.orcid0000-0002-4203-1679
person.identifier.orcid0000-0003-4803-7964
person.identifier.ridO-3416-2015
person.identifier.ridG-6405-2013
person.identifier.scopus-author-id55958626100
person.identifier.scopus-author-id35606413800
person.identifier.scopus-author-id35602693500
rcaap.rightsrestrictedAccess
rcaap.typeconferenceObject
relation.isAuthorOfPublication081b091f-c9fa-470a-9a28-51fe4c85864a
relation.isAuthorOfPublication7701f2af-b9b8-42aa-bb1e-a13e5a4897be
relation.isAuthorOfPublication62bebc54-51ee-4e35-bcf5-6dd69efd09e0
relation.isAuthorOfPublication.latestForDiscovery081b091f-c9fa-470a-9a28-51fe4c85864a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
14552.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format

Collections