Logo do repositório
 
A carregar...
Miniatura
Publicação

Exploiting the functional training approach in Radial Basis Function networks

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
06051694.pdf3.48 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

This paper investigates the application of a novel approach for the parameter estimation of a Radial Basis Function (RBF) network model. The new concept (denoted as functional training) minimizes the integral of the analytical error between the process output and the model output [1]. In this paper, the analytical expressions needed to use this approach are introduced, both for the back-propagation and the Levenberg- Marquardt algorithms. The results show that the proposed methodology outperforms the standard methods in terms of function approximation, serving as an excellent tool for RBF networks training.

Descrição

Palavras-chave

Radial Basis Neural networks training Local nonlinear optimization Parameter separability Functional backpropagation

Contexto Educativo

Citação

Cabrita, Cristiano L.; Ruano, Antonio E; Ferreira, Pedro M. Exploiting the functional training approach in Radial Basis Function networks, Trabalho apresentado em 2011 IEEE 7th International Symposium on Intelligent Signal Processing - (WISP 2011), In Proceedings of the 2011 IEEE 7th International Symposium on Intelligent Signal Processing, Floriana, Malta, 2011.

Projetos de investigação

Unidades organizacionais

Fascículo