Repository logo
 
Publication

On Grand Lebesgue spaces on sets of infinite measure

dc.contributor.authorSamko, Stefan
dc.contributor.authorUmarkhadzhiev, Salaudin
dc.date.accessioned2019-11-20T15:07:43Z
dc.date.available2019-11-20T15:07:43Z
dc.date.issued2017-04
dc.description.abstractWe consider grand Lebesgue spaces on sets of infinite measure and study the dependence of these spaces on the choice of the so-called. We also consider Mikhlin and Marcinkiewicz theorems on Fourier multipliers in the setting of grand spaces. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
dc.description.abstractThe theory of grand spaces is intensively developed during the last two decades. Such spaces L p)(), 1 < p < ∞, on bounded sets ⊂ Rn were introduced by T. Iwaniec and C. Sbordone [8] in connection with application to differential equations. In the last years, operators of harmonic analysis were widely studied in such spaces, see [1]–[6], [11]–[15] and the references therein. Some of these results are presented in the books [16], [17]. In all the above mentioned studies only sets of finite measure were allowed, based on the embedding L p ⊂ L p−ε. In the papers [23], [24], [26] there was suggested an approach to define grand spaces L p) a () on sets ⊆ Rn of not necessarily finite measure. In the general form given in [26], this approach is based on introducing the small power aε of a weight a into the norm of grand space, see (2.1). We call this function a, which determines the grand space L p) a (), the of this space.
dc.description.sponsorshipRussian Fund for Basic Research [15-01-02732]
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1002/mana.201600136
dc.identifier.issn0025-584X
dc.identifier.issn1522-2616
dc.identifier.urihttp://hdl.handle.net/10400.1/13177
dc.language.isoeng
dc.peerreviewedyes
dc.publisherWiley-V C H Verlag Gmbh
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectLp spaces
dc.titleOn Grand Lebesgue spaces on sets of infinite measure
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage919
oaire.citation.issue05-jun
oaire.citation.startPage913
oaire.citation.titleMathematische Nachrichten
oaire.citation.volume290
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
13177 linha 15 - Samko-2016-On-grand-lebesgue-spaces-on-sets-of.pdf
Size:
144.81 KB
Format:
Adobe Portable Document Format