Repository logo
 
Publication

Maximal operator with rough kernel in variable musielak-morrey-orlicz type spaces, variable herz spaces and grand variable lebesgue spaces

dc.contributor.authorRafeiro, Humberto
dc.contributor.authorSamko, Stefan
dc.date.accessioned2019-11-20T15:07:22Z
dc.date.available2019-11-20T15:07:22Z
dc.date.issued2017-09
dc.description.abstractIn the frameworks of some non-standard function spaces (viz. Musielak-Orlicz spaces, generalized Orlicz-Morrey spaces, generalized variable Morrey spaces and variable Herz spaces) we prove the boundedness of the maximal operator with rough kernel. The results are new even for p constant.
dc.description.sponsorshipPontificia Universidad Javeriana [PPT: 7117]
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/s00020-017-2398-2
dc.identifier.issn0378-620X
dc.identifier.issn1420-8989
dc.identifier.urihttp://hdl.handle.net/10400.1/13004
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Basel Ag
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSingular integral-operators
dc.subjectElectrorheological fluids
dc.subjectLinear growth
dc.subjectExponent
dc.subjectBoundedness
dc.subjectDiffusion
dc.subjectFunctionals
dc.titleMaximal operator with rough kernel in variable musielak-morrey-orlicz type spaces, variable herz spaces and grand variable lebesgue spaces
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage124
oaire.citation.issue1
oaire.citation.startPage111
oaire.citation.titleIntegral Equations and Operator Theory
oaire.citation.volume89
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
rafeiro2017.pdf
Size:
520.07 KB
Format:
Adobe Portable Document Format