Repository logo
 
Publication

A tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and classification tasks

dc.contributor.authorPassos, Dário
dc.contributor.authorMishra, Puneet
dc.date.accessioned2022-07-25T11:25:39Z
dc.date.available2022-07-25T11:25:39Z
dc.date.issued2022
dc.description.abstractDeep spectral modelling for regression and classification is gaining popularity in the chemometrics domain. A major topic in the deep learning (DL) modelling of spectral data is the choice and optimization of the deep neural network architecture suitable for the specific task of spectral modelling. Although there are several recent research articles already available in the chemometric domain showing advanced approaches to deep spectral modelling, currently, there is a lack of hands-on tutorial articles in this space that supply the non-expert user with practical tools to learn and implement advanced DL optimization methodologies aimed a spectral data. Hence, this tutorial article aims a reducing the gap between the non-expert user of DL in the chemometric community and the implementation of DL models for daily usage. This tutorial supplies a quick introduction to the state-of-the-art deep spectral modelling and related DL concepts and presents a set of methodologies aimed a DL hyperparameters' optimization. To this end, this tutorial shows two practical examples on how to implement and optimize two DL models for spectral regression and classification tasks. The models are implemented in python and Tensorflow and the complete code is supplied in the form of two complementary notebooks.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.chemolab.2022.104520pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.1/18083
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationCenter for Electronics, Optoelectronics and Telecommunications
dc.relationCenter for Electronics, Optoelectronics and Telecommunications
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDeep learningpt_PT
dc.subjectSpectroscopypt_PT
dc.subjectChemometricspt_PT
dc.subjectPredictive modellingpt_PT
dc.subjectOptimizationpt_PT
dc.titleA tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and classification taskspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Electronics, Optoelectronics and Telecommunications
oaire.awardTitleCenter for Electronics, Optoelectronics and Telecommunications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00631%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00631%2F2020/PT
oaire.citation.startPage104520pt_PT
oaire.citation.titleChemometrics and Intelligent Laboratory Systemspt_PT
oaire.citation.volume223pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNamePassos
person.givenNameDário
person.identifier324764
person.identifier.ciencia-id3D13-C289-0595
person.identifier.orcid0000-0002-5345-5119
person.identifier.scopus-author-id21743737200
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication30c8500a-c12b-47c3-845e-9b64957cf233
relation.isAuthorOfPublication.latestForDiscovery30c8500a-c12b-47c3-845e-9b64957cf233
relation.isProjectOfPublication6c1217d9-1340-45e8-91d8-e75348854f62
relation.isProjectOfPublication77b70459-1e8c-4a6c-9856-58860aaddb6b
relation.isProjectOfPublication.latestForDiscovery6c1217d9-1340-45e8-91d8-e75348854f62

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A tutorial on automatic hyperparameter tuning of deep spectral modelling.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: