Browsing by Author "Bousbaa, Hassan"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- An overview of the spindle assembly checkpoint status in oral cancerPublication . Teixeira, Jose Henrique; Silva, Patrícia; Reis, Rita Margarida; Moura, Ines Moranguinho; Marques, Sandra; Fonseca, Joana; Monteiro, Luis Silva; Bousbaa, HassanAbnormal chromosome number, or aneuploidy, is a common feature of human solid tumors, including oral cancer. Deregulated spindle assembly checkpoint (SAC) is thought as one of the mechanisms that drive aneuploidy. In normal cells, SAC prevents anaphase onset until all chromosomes are correctly aligned at the metaphase plate thereby ensuring genomic stability. Significantly, the activity of this checkpoint is compromised in many cancers. While mutations are rather rare, many tumors show altered expression levels of SAC components. Genomic alterations such as aneuploidy indicate a high risk of oral cancer and cancer-related mortality, and the molecular basis of these alterations is largely unknown. Yet, our knowledge on the status of SAC components in oral cancer remains sparse. In this review, we address the state of our knowledge regarding the SAC defects and the underlying molecular mechanisms in oral cancer, and discuss their therapeutic relevance, focusing our analysis on the core components of SAC and its target Cdc20.
- Co-silencing of human Bub3 and dynein highlights an antagonistic relationship in regulating kinetochore-microtubule attachmentsPublication . Silva, Patricia M. A.; Tavares, Alvaro A.; Bousbaa, HassanWe previously reported that the spindle assembly checkpoint protein Bub3 is involved in regulating kinetochore-microtubule (KT-MT) attachments. Also, Bub3 was reported to interact with the microtubule motor protein dynein. Here we examined how this interaction contributes to KT-MT attachments. Depletion of Bub3 or dynein induced misaligned chromosomes, consistent with their role in KT-MT attachments. Unexpectedly, co-silencing of both proteins partially suppressed the misalignment phenotype and restored chromosome congression. Consistent with these observations, KT-MT attachments in co-depleted cells were stable, able to drive chromosome congression, and produce inter-and intra-kinetochore stretch, indicating they are functional. We suggest that a mutual antagonism exists between Bub3 and dynein to ensure optimal KT-MT attachments. (C) 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
- Dynein-dependent transport of spindle assembly checkpoint proteins off kinetochores toward spindle polesPublication . Silva, PMA; Patrícia M.A. Silva; Reis, Rita M.; Bolanos-Garcia, Victor M.; Florindo, Claudia; Tavares, Alvaro; Bousbaa, HassanA predominant mechanism of spindle assembly checkpoint (SAC) silencing is dynein-mediated transport of certain kinetochore proteins along microtubules. There are still conflicting data as to which SAC proteins are dynein cargoes. Using two ATP reduction assays, we found that the core SAC proteins Mad1, Mad2, Bub1, BubR1, and Bub3 redistributed from attached kinetochores to spindle poles, in a dynein-dependent manner. This redistribution still occurred in metaphase-arrested cells, at a time when the SAC should be satisfied and silenced. Unexpectedly, we found that a pool of Hec1 and Mis12 also relocalizes to spindle poles, suggesting KMN components as additional dynein cargoes. The potential significance of these results for SAC silencing is discussed. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
- Prenylated chalcone 2 ccts as an antimitotic agent and enhances the chemosensitivity of tumor cells to paclitaxelPublication . Fonseca, Joana; Marques, Sandra; Silva, PMA; Patrícia M.A. Silva; Brandão, Pedro; Cidade, Honorina; Pinto, Madalena M.; Bousbaa, HassanWe previously reported that prenylated chalcone 2 (PC2), the O-prenyl derivative (2) of 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone (1), induced cytotoxicity of tumor cells via disruption of p53-MDM2 interaction. However, the cellular changes through which PC2 exerts its cytotoxic activity and its antitumor potential, remain to be addressed. In the present work, we aimed to (i) characterize the effect of PC2 on mitotic progression and the underlying mechanism; and to (ii) explore this information to evaluate its ability to sensitize tumor cells to paclitaxel in a combination regimen. PC2 was able to arrest breast adenocarcinoma MCF-7 and non-small cell lung cancer NCI-H460 cells in mitosis. All mitosis-arrested cells showed collapsed mitotic spindles with randomly distributed chromosomes, and activated spindle assembly checkpoint. Live-cell imaging revealed that the compound induced a prolonged delay (up to 14 h) in mitosis, culminating in massive cell death by blebbing. Importantly, PC2 in combination with paclitaxel enhanced the effect on cell growth inhibition as determined by cell viability and proliferation assays. Our findings demonstrate that the cytotoxicity induced by PC2 is mediated through antimitotic activity as a result of mitotic spindle damage. The enhancement effects of PC2 on chemosensitivity of cancer cells to paclitaxel encourage further validation of the clinical potential of this combination.
- A Pyranoxanthone as a potent antimitotic and sensitizer of cancer cells to low doses of PaclitaxelPublication . França, Fábio; Silva, Patrícia M. A.; Soares, José X.; Henriques, Ana C.; Loureiro, Daniela R. P.; Azevedo, Carlos M. G.; Afonso, Carlos M. M.; Bousbaa, HassanMicrotubule-targeting agents (MTAs) remain a gold standard for the treatment of several cancer types. By interfering with microtubules dynamic, MTAs induce a mitotic arrest followed by cell death. This antimitotic activity of MTAs is dependent on the spindle assembly checkpoint (SAC), which monitors the integrity of the mitotic spindle and proper chromosome attachments to microtubules in order to ensure accurate chromosome segregation and timely anaphase onset. However, the cytotoxic activity of MTAs is restrained by drug resistance and/or toxicities, and had motivated the search for new compounds and/or alternative therapeutic strategies. Here, we describe the synthesis and mechanism of action of the xanthone derivative pyranoxanthone 2 that exhibits a potent anti-growth activity against cancer cells. We found that cancer cells treated with the pyranoxanthone 2 exhibited persistent defects in chromosome congression during mitosis that were not corrected over time, which induced a prolonged SAC-dependent mitotic arrest followed by massive apoptosis. Importantly, pyranoxanthone 2 was able to potentiate apoptosis of cancer cells treated with nanomolar concentrations of paclitaxel. Our data identified the potential of the pyranoxanthone 2 as a new potent antimitotic with promising antitumor potential, either alone or in combination regimens.
- Spindle Assembly Checkpoint as a Potential Target in Colorectal Cancer: Current Status and Future PerspectivesPublication . Diogo, Vania; Teixeira, Joana; Silva, Patrícia M.A.; Bousbaa, HassanColorectal cancer (CRC), one of the most common malignancies worldwide, is often diagnosed at an advanced stage, and resistance to chemotherapeutic and existing targeted therapy is a major obstacle to its successful treatment. New targets that offer alternative clinical options are therefore urgently needed. Recently, perturbation of the spindle assembly checkpoint (SAC), the surveillance mechanism that maintains anaphase inhibition until all chromosomes reach the metaphase plate, has been regarded as a promising target to fight cancer cells, either alone or in combination regimens. Consistent with this strategy, many cancers, including CRC, exhibit altered expression of SAC genes. In this article, we review our current knowledge on SAC activity status in CRC, and on current anti-CRC strategies and future therapeutic perspectives on the basis of SAC targeting experiments in vitro and in animal models. (C) 2016 Elsevier Inc. All rights reserved.
- Spindly and Bub3 expression in oral cancer: Prognostic and therapeutic implicationsPublication . Silva, Patricia M. A.; Delgado, Maria Leonor; Ribeiro, Nilza; Florindo, Claudia; Tavares, Alvaro A.; Ribeiro, Diana; Lopes, Carlos; do Amaral, Barbas; Bousbaa, Hassan; Monteiro, Luis SilvaObjectives Bub3 and Spindly are essential proteins required for the activation and inactivation of the spindle assembly checkpoint, respectively. Here, we explored the clinicopathological significance and the therapeutic potential of the opposing roles of the two proteins in oral squamous cell carcinoma (OSCC). Materials and Methods Bub3 and Spindly expression was evaluated by immunohistochemistry in 62 tissue microarrays from OSCC and by real-time PCR in OSCC cell lines and in normal human oral keratinocytes. The results were analyzed as to their clinicopathological significance. RNA interference-mediated Spindly or Bub3 inhibition was combined with cisplatin treatment, and the effect on the viability of OSCC cells was assessed. Results Overexpression of Bub3 and Spindly was detected in OSCC patients. High expression of Spindly, Bub3, or both was an independent prognostic indicator for cancer-specific survival and was associated with increased cellular proliferation. Accordingly, Bub3 and Spindly were upregulated in OSCC cells comparatively to their normal counterpart. Inhibition of Bub3 or Spindly was cytotoxic to OSCC cells and enhanced their chemosensitivity to cisplatin. Conclusions The data point out Bub3 and Spindly as potential markers of proliferation and prognosis, and highlight the potential therapeutic benefit of combining their inhibition with cisplatin.
- Suppression of spindly delays mitotic exit and exacerbates cell death response of cancer cells treated with low doses of paclitaxelPublication . Silva, Patrícia M. A.; Ribeiro, Nilza; Lima, Raquel T.; Andrade, Claudia; Diogo, Vania; Teixeira, Joana; Florindo, C.; Tavares, Alvaro; Vasconcelos, M. Helena; Bousbaa, HassanMicrotubule-targeting agents (MTAs) are used extensively for the treatment of diverse types of cancer. They block cancer cells in mitosis through the activation of the spindle assembly checkpoint (SAC), the surveillance mechanism that ensures accurate chromosome segregation at the onset of anaphase. However, the cytotoxic activity of MTAs is limited by premature mitotic exit (mitotic slippage) due to SAC silencing. Here we have explored the dual role of the protein Spindly in chromosome attachments and SAC silencing to analyze the consequences of its depletion on the viability of tumor cells treated with clinically relevant doses of paclitaxel. As expected, siRNA-mediated Spindly suppression induced chromosome misalignment and accumulation of cells in mitosis. Remarkably, these cells were more sensitive to low-doses of paclitaxel. Sensitization was due to an increase in the length of mitotic arrest and high frequency of multinucleated cells, both correlated with an exacerbated post-mitotic cell death response as determined by cell fate profiling. Thus, by affecting both SAC silencing and chromosome attachment, Spindly targeting offers a double-edged sword that potentiates tumor cell killing by clinically relevant doses of paclitaxel, providing a rationale for combination chemotherapy against cancer. (C) 2017 Elsevier B.V. All rights reserved.