Browsing by Author "Carvalho, Edison Samir Mascarelhas"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.)Publication . Gregorio, Silvia; Carvalho, Edison Samir Mascarelhas; Encarnação, Sandra; Wilson, J.; Power, Deborah; Canario, Adelino V. M.; Fuentes, J.The processing of intestinal fluid, in addition to a high drinking rate, is essential for osmoregulation in marine fish. This study analyzed the long-term response of the sea bream (Sparus aurata L.) to relevant changes of external salinity (12, 35 and 55p.p.t.), focusing on the anterior intestine and in the less-often studied rectum. Intestinal water absorption, epithelial HCO3– secretion and gene expression of the main molecular mechanisms (SLC26a6, SLC26a3, SLC4a4, atp6v1b, CFTR, NKCC1 and NKCC2) involved in Cl– and HCO3– movements were examined. The anion transporters SLC26a6 and SLC26a3 are expressed severalfold higher in the anterior intestine, while the expression of Atp6v1b (V-type H+-ATPase β-subunit) is severalfold higher in the rectum. Prolonged exposure to altered external salinity was without effect on water absorption but was associated with concomitant changes in intestinal fluid content, epithelial HCO3– secretion and salinity-dependent expression of SLC26a6, SLC26a3 and SLC4a4 in the anterior intestine. However, the most striking response to external salinity was obtained in the rectum, where a 4- to 5-fold increase in water absorption was paralleled by a 2- to 3-fold increase in HCO3– secretion in response to a salinity of 55p.p.t. In addition, the rectum of high salinity-acclimated fish shows a sustained (and enhanced) secretory current (Isc), identified in vitro in Ussing chambers and confirmed by the higher expression of CFTR and NKCC1 and by immunohistochemical protein localization. Taken together, the present results suggest a functional anterior–posterior specialization with regard to intestinal fluid processing and subsequently to salinity adaptation of the sea bream. The rectum becomes more active at higher salinities and functions as the final controller of intestinal function in osmoregulation.
- AVT is involved in the regulation of ion transport in the intestine of the sea bream (Sparus aurata)Publication . Martos-Sitcha, J. A.; Gregorio, Silvia; Carvalho, Edison Samir Mascarelhas; Canario, Adelino V. M.; Power, Deborah; Mancera, J. M.; Martínez-Rodriguez, G.; Fuentes, J.The intestine of marine fish plays a crucial role in ion homeostasis by selective processing of ingested fluid. Although arginine vasotocin (AVT) is suggested to play a role in ion regulation in fish, its action in the intestine has not been demonstrated. Thus, the present study investigated in vitro the putative role of AVT in intestinal ion transport in the sea bream (Sparus aurata). A cDNA encoding part of an AVT receptor was isolated and phylogenetic analysis revealed it clustered with the V1a2-type receptor clade. V1a2 transcripts were expressed throughout the gastrointestinal tract, from esophagus to rectum, and were most abundant in the rectum regardless of long-term exposure to external salinities of 12, 35 or 55 p.p.t. Basolateral addition of AVT (10 6 M) to the anterior intestine and rectum of sea bream adapted to 12, 35 or 55 p.p.t. mounted in Ussing chambers produced rapid salinity and region dependent responses in short circuit current (Isc), always in the absorptive direction. In addition, AVT stimulation of absorptive Isc conformed to a dose–response curve, with significant effects achieved at 10 8 M, which corresponds to physiological values of plasma AVT for this species. The effect of AVT on intestinal Isc was insensitive to the CFTR selective inhibitor NPPB (200 lM) applied apically, but was completely abolished in the presence of apical bumetanide (200 lM). We propose a role for AVT in the regulation of ion absorption in the intestine of the sea bream mediated by an absorptive bumetanide-sensitive mechanism, likely NKCC2.
- Disrupção da glândula tiróide por composto goitrógeno (PTU)Publication . Carvalho, Edison Samir Mascarelhas; Power, Deborah; Fuentes, JuanGoitrogenos são compostos naturais ou de origem antropogénica capazes de interferir e suprimir a função da glândula tiróide inibindo a produção das hormonas tiróde (TH). A pele desempenha várias funções importantes nos organismos aquáticos tais como a absorção de sais, água, gás para respiração e secreção de muco e péptidos com acção anti-microbial. Pouco se sabe sobre o efeito da disrupção do HPT e as alterações morfo-funcionais que se verificam na pele. O objectivo deste trabalho consistiu em determinar as alterações moléculares e morfo-funcionais na pele de X. laevis na presença de goitrógeno. O PTU, utilizado no tratamento de hipertiroidismos, provocou alterações significativas na glândula tiróide (hiperactividade) e nas propriedades bio-electricas como na corrente de curto-circuito (Isc), resistência (Rt) , na quantidade de glândulas exócrinas e na função barreira da pele de X. laevis.
- Integument structure and function in juvenile Xenopus laevis with disrupted thyroid balancePublication . Carvalho, Edison Samir Mascarelhas; Fuentes, J.; Power, DeborahThe skin is the largest organ in the body and is a barrier between the internal and external environment. The present study evaluates how PTU, a goitrogen, that is used to treat hyperthyroidism affects the structure and electrical properties of the frog (Xenopus laevis) skin. The results are considered in the context of the two-membrane model established in the seminal work of Ussing and collegues in the 1940s and 1950s. In vitro experiments with skin from Xenopus adults revealed that PTU can act directly on skin and causes a significant increase (p < 0.05, One-way ANOVA) in short circuit current (Isc) via an amiloride-insensitive mechanism. Juvenile Xenopus exposed to waterborne PTU (5 mg/L) had a significantly bigger and more active thyroid gland (p < 0.01, Student’s t-test) than control Xenopus. The bioelectric properties of skin taken from Xenopus juveniles treated with PTU in vivo had a lower Isc, (3.05 ± 0.4, n = 13) and Rt (288.2 ± 39.5) than skin from control Xenopus (Isc, 4.19 ± 1.14, n = 14; Rt, 343.3 ± 43.3). A histological assessment of skin from PTU treated Xenopus juveniles revealed the epidermis was significantly thicker (p < 0.01, Student’s t-test) and had a greater number of modified exocrine glands (p < 0.01, Student’s t-test) in the dermis compared to control skin. Modifications in skin structure are presumably the basis for its changed bioelectric properties and the study highlights a site of action for environmental chemicals which has been largely neglected.
- Mucosal delivery of liposome-chitosan nanoparticles complexesPublication . Carvalho, Edison Samir Mascarelhas; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, BegoñaDesigning adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.
- Prolactin regulates luminal bicarbonate secretion in the intestine of the sea bream (Sparus aurata L.)Publication . Ferlazzo, A.; Carvalho, Edison Samir Mascarelhas; Gregorio, Silvia; Power, Deborah; Canario, Adelino V. M.; Tischitta, F.; Fuentes, J.The pituitary hormone prolactin is a pleiotropic endocrine factor that plays a major role in the regulation of ion balance in fish, with demonstrated actions mainly in the gills and kidney. The role of prolactin in intestinal ion transport remains little studied. In marine fish, which have high drinking rates, epithelial bicarbonate secretion in the intestine produces luminal carbonate aggregates believed to play a key role in water and ion homeostasis. The present study was designed to establish the putative role of prolactin in the regulation of intestinal bicarbonate secretion in a marine fish. Basolateral addition of prolactin to the anterior intestine of sea bream mounted in Ussing chambers caused a rapid (<20min) decrease of bicarbonate secretion measured by pH-stat. A clear inhibitory dose–response curve was obtained, with a maximal inhibition of 60–65% of basal bicarbonate secretion. The threshold concentration of prolactin for a significant effect on bicarbonate secretion was 10ngml–1, which is comparable with putative plasma levels in seawater fish. The effect of prolactin on apical bicarbonate secretion was independent of the generation route for bicarbonate, as shown in a preparation devoid of basolateral HCO3 –/CO2 buffer. Specific inhibitors of JAK2 (AG-490, 50mmoll–1), PI3K (LY-294002, 75mmoll–1) or MEK (U-012610, 10mmoll–1) caused a 50–70% reduction in the effect of prolactin on bicarbonate secretion, and demonstrated the involvement of prolactin receptors. In addition to rapid effects, prolactin has actions at the genomic level. Incubation of intestinal explants of anterior intestine of the sea bream in vitro for 3h demonstrated a specific effect of prolactin on the expression of the Slc4a4A Na+–HCO3– co-transporter, but not on the Slc26a6A or Slc26a3B Cl–/HCO3 – exchanger. We propose a new role for prolactin in the regulation of bicarbonate secretion, an essential function for ion/water homeostasis in the intestine of marine fish.
- Water absorption and bicarbonate secretion in the intestine of the sea bream are regulated by transmembrane and soluble adenylyl cyclase stimulationPublication . Carvalho, Edison Samir Mascarelhas; Gregorio, Silvia; Power, Deborah; Canario, Adelino V. M.; Fuentes, J.In the marine fish intestine luminal, HCO3 - can remove divalent ions (calcium and magnesium) by precipitation in the form of carbonate aggregates. The process of epithelial HCO3 - secretion is under endocrine control, therefore, in this study we aimed to characterize the involvement of transmembrane (tmACs) and soluble (sACs) adenylyl cyclases on the regulation of bicarbonate secretion (BCS) and water absorption in the intestine of the sea bream (Sparus aurata). We observed that all sections of sea bream intestine are able to secrete bicarbonate as measured by pH–Stat in Ussing chambers. In addition, gut sac preparations reveal net water absorption in all segments of the intestine, with significantly higher absorption rates in the anterior intestine that in the rectum. BCS and water absorption are positively correlated in all regions of the sea bream intestinal tract. Furthermore, stimulation of tmACs (10 lM FK? 500 lM IBMX) causes a significant decrease in BCS, bulk water absorption and short circuit current (Isc) in a region dependent manner. In turn, stimulation of sACs with elevated HCO3 - results in a significant increase in BCS, and bulk water absorption in the anterior intestine, an action completely reversed by the sAC inhibitor KH7 (200 lM). Overall, the results reveal a functional relationship between BCS and water absorption in marine fish intestine and modulation by tmACs and sAC. In light of the present observations, it is hypothesized that the endocrine effects on intestinal BCS and water absorption mediated by tmACs are locally and reciprocally modulated by the action of sACs in the fish enterocyte, thus fine-tuning the process of carbonate aggregate production in the intestinal lumen.
