Browsing by Author "Castanho, Sara"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Does consistent individual variability in pelagic fish larval behaviour affect recruitment in nursery habitats?Publication . Baptista, Vânia; Costa, Eudriano; Carere, Claudio; Morais, Pedro; Cruz, Joana; Cerveira, Inês; Castanho, Sara; Ribeiro, Laura; Pousao-Ferreira, Pedro; Leitão, Francisco; Teodosio, MariaIndividual animals across all taxa differ consistently in behaviour, i.e. they show personality traits. This inter-individual variability has significant ecological and evolutionary consequences, since it affects a range of population-level processes. Here, we focus on the selection and recruitment of nursery habitats in temperate fish larvae. The "Sense Acuity and Behavioural Hypothesis" has proposed that fish larvae could detect and follow environmental cues to actively choose suitable nursery habitats. We empirically tested this hypothesis questioning if this non-random active process occurs and if it could be linked to consistency in individual behaviours. Individual larvae of the white seabream Diplodus sargus (Linnaeus, 1758) were tested repeatedly at different ages in a two-channel choice-chamber apparatus exposing them to a flow with different stimuli, as nursery habitats (lagoon, coastal), different temperatures or salinities and recording exploratory activity and preference in the different conditions. Most larvae changed behaviour during ontogeny, but they were also significantly consistent in their behaviour, revealing strong individuality; yet, no significant preference for the presented stimuli emerged, nor it was related to individuality. Exploratory activity was higher when larvae showed unresponsive or inconclusive behaviours, meaning that the larvae tried to find a different stimulus from the one that we were offering or had random habitat selection. Individual behavioural consistency could influence the process of searching for suitable nursery habitats and, consequently, dispersion and connectivity of white seabream population. Characterizing the behaviour of temperate pelagic marine fish larvae may shed light on fish recruitment variability, help refining larval dispersion models and possibly help understanding effects of climate change on population distribution and connectivity. Significance statement A Chinese idiom says that "It is easier to change mountains and rivers than to alter one's character." What about fish? Well, fish can exhibit individuality traits that control autoecological and demecological processes. For example, shy fish have lower fitness while the rate of invasion progress is faster in populations with bolder individuals. Individuality studies rarely focused on fish larvae, except for coral fish. So, we tested if temperate fish larvae display consistent behaviour throughout ontogeny. This goal delves into the Sense Acuity And Behavioural Hypothesis which incorporated behaviour into the hypotheses deeming to explain fish recruitment variability. We found that temperate fish larvae display consistent individual behavioural differences in exploratory activity since early in ontogeny. This confirms the deterministic role of pelagic fish larvae behaviour on population connectivity processes, namely to control their dispersion and choose a nursery habitat.
- Draft genome sequence of Vibrio chagasii 18LP, isolated from Gilthead Seabream (Sparus aurata) larvae reared in aquaculturePublication . Sanches-Fernandes, Gracinda M. M.; Califano, Gianmaria; Keller-Costa, Tina; Castanho, Sara; Soares, Florbela; Ribeiro, Laura; Pousão-Ferreira, Pedro; Mata, Leonardo; Costa, RodrigoWe report the draft genome sequence of Vibrio chagasii strain 18LP, isolated from gilthead seabream larvae at a fish hatchery research station in Portugal. The genome presents numerous features underlying opportunistic behavior, including genes coding for toxin biosynthesis and tolerance, host cell invasion, and heavy metal resistance.
- Draft genome sequence of vibrio jasicida 20LP, an opportunistic bacterium isolated from fish larvaePublication . Sanches-Fernandes, Gracinda M. M.; Califano, Gianmaria; Keller-Costa, Tina; Castanho, Sara; Soares, Florbela; Ribeiro, Laura; Pousão-Ferreira, Pedro; Mata, Leonardo; Costa, RodrigoWe present the genome sequence of Vibrio jasicida 20LP, a bacterial strain retrieved from larvae of gilthead seabream (Sparus aurata), a highly valuable, model fish species in land-based aquaculture. Annotation of the V. jasicida 20LP genome reveals multiple genomic features potentially underpinning opportunistic associations with diverse marine animals.
- Effect of dietary l-glutamine supplementation on the intestinal physiology and growth during Solea senegalensis larval developmentPublication . Matias, Ana Catarina; Viegas, Ana Rita; Couto, Ana; Lourenço-Marques, Cátia; Aragão, Cláudia; Castanho, Sara; Gamboa, Margarida; Candeias-Mendes, Ana; Soares, Florbela; Modesto, Teresa; Pousão-Ferreira, Pedro; Ribeiro, LauraThe maturation of the intestinal digestive and absorptive functions might limit the amount of absorbed nutrients to fulfil the high requirements of the fast-growing marine fish larva. Glutamine (Gln) has been described to improve intestinal epithelium functions, due to its involvement in energy metabolism and protein synthesis. The purpose of this study was to evaluate dietary 0.2% Gln supplementation on aspects of intestinal physiology, protein metabolism and growth -related genes expression in Senegalese sole larvae. Experiment was carried out between 12 and 33 days post hatching (DPH) and fish were divided into two experimental groups, one fed Artemia spp. (CTRL) and the other fed Artemia spp. supplemented with Gln (GLN). GLN diet had two times more Gln than the CTRL diet. Samples were collected at 15, 19, 26 and 33 DPH for biometry, histology, and digestive enzymes activity, and at 33 DPH for gene expression, protein metabolism and AA content determination. Growth was significantly higher for Senegalese sole fed GLN diet, supported by differences on protein metabolism and growth -related gene expression. Slight differences were observed between treatments regarding the intestinal physiology. Overall, GLN diet seems to be directed to enhance protein metabolism leading to higher larval growth.
- Effects of live feed manipulation with algal‐derived antimicrobial metabolites on fish larvae microbiome assembly: a molecular‐based assessmentPublication . Sanches‐Fernandes, Gracinda M. M.; Califano, Gianmaria; Castanho, Sara; Soares, Florbela; Ribeiro, Laura; Pousão‐Ferreira, Pedro; Mata, Leonardo; Costa, RodrigoOpportunistic microorganisms acquired through rearing water or live feed ingestion are believed to underpin high mortality rates of fish larvae, constituting a production bottleneck for the aquaculture industry. We employed 16S rRNA gene sequencing to determine whether treatment of live feed (rotifers and Artemia) with algal-derived, antibacterial metabolites could alter bacterial community structure of gilthead seabream (Sparus aurata) larvae in a larviculture facility. Owing to a large degree of sample-to-sample variation, pronounced 'legacy effects' of live feed manipulation on the total fish larvae bacterial community could not be verified. Notwithstanding, the approach induced shifts in relative abundance of specific bacterial phylotypes in both the live feed and fish larvae. Some phylotypes representing opportunistic taxa such as Stenotrophomonas, Pseudomonas and Klebsiella displayed reduced abundances in the bacterial community of fish larvae fed metabolite-treated vs. control live feed. Conversely, potentially beneficial phylotypes in the Alphaproteobacteria clade were consistently-although not significantly-promoted in the treated larval samples. These outcomes encourage future microbiome manipulation attempts to improve fish larviculture. However, successful host colonization and competition with resident symbionts are primary barriers that need to be overcome if live feeds are to be used as effective delivery systems of beneficial bacteria to fish larvae.
- Molecular Taxonomic Profiling of Bacterial Communities in a Gilthead Seabream (Sparus aurata) HatcheryPublication . Califano, Gianmaria; Castanho, Sara; Soares, Florbela; Ribeiro, Laura; Cox, C. J.; Mata, Leonardo; Costa, RodrigoAs wild fish stocks decline worldwide, land-based fish rearing is likely to be of increasing relevance to feeding future human generations. Little is known about the structure and role of microbial communities in fish aquaculture, particularly at larval developmental stages where the fish microbiome develops and host animals are most susceptible to disease. We employed next-generation sequencing (NGS) of 16S rRNA gene reads amplified from total community DNA to reveal the structure of bacterial communities in a gilthead seabream (Sparus aurata) larviculture system. Early-(2 days after hatching) and late-stage (34 days after hatching) fish larvae presented remarkably divergent bacterial consortia, with the genera Pseudoalteromonas, Marinomonas, Acinetobacter, and Acidocella (besides several unclassified Alphaproteobacteria) dominating the former, and Actinobacillus, Streptococcus, Massilia, Paracoccus, and Pseudomonas being prevalent in the latter. A significant reduction in rearing-water bacterial diversity was observed during the larviculture trial, characterized by higher abundance of the Cryomorphaceae family (Bacteroidetes), known to populate microniches with high organic load, in late-stage rearing water in comparison with early-stage rearing-water. Furthermore, we observed the recruitment, into host tissues, of several bacterial phylotypes-including putative pathogens as well as mutualists-that were detected at negligible densities in rearing-water or in the live feed (i.e., rotifers and artemia). These results suggest that, besides host-driven selective forces, both the live feed and the surrounding rearing environment contribute to shaping the microbiome of farmed gilthead sea-bream larvae, and that a differential establishment of host-associated bacteria takes place during larval development.
- Swimming abilities of temperate pelagic fish larvae prove that they may control their dispersion in coastal areasPublication . Baptista, Vânia; Morais, Pedro; Cruz, Joana; Castanho, Sara; Ribeiro, L.; Pousão-Ferreira, P.; Leitão, Francisco Miguel de Sousa; Wolanski, E.; Teodosio, Maria AlexandraThe Sense Acuity and Behavioral (SAAB) Hypothesis proposes that the swimming capabilities and sensorial acuity of temperate fish larvae allows them to find and swim towards coastal nursery areas, which are crucial for their recruitment. To gather further evidence to support this theory, it is necessary to understand how horizontal swimming capability varies along fish larvae ontogeny. Therefore, we studied the swimming capability of white seabream Diplodus sargus (Linnaeus, 1758) larvae along ontogeny, and their relationship with physiological condition. Thus, critical swimming speed (U-crit) and the distance swam (km) during endurance tests were determined for fish larvae from 15 to 55 days post-hatching (DPH), and their physiological condition (RNA, DNA and protein contents) was assessed. The critical swimming speed of white seabream larvae increased along ontogeny from 1.1 cm s(-1) (15 DPH) to 23 cm s(-1) (50 and 55 DPH), and the distance swam by larvae in the endurance experiments increased from 0.01 km (15 DPH) to 86.5 km (45 DPH). This finding supports one of the premises of the SAAB hypothesis, which proposes that fish larvae can influence their transport and distribution in coastal areas due to their swimming capabilities. The relationship between larvae's physiological condition and swimming capabilities were not evident in this study. Overall, this study provides critical information for understanding the link between population dynamics and connectivity with the management and conservation of fish stocks.
- The effect of live feeds bathed with the red seaweed Asparagopsis armata on the survival, growth and physiology status of Sparus aurata larvaePublication . Castanho, Sara; Califano, Gianmaria; Soares, F.; Costa, Rodrigo; Mata, L.; Pousao-Ferreira, P.; Ribeiro, L.Larval rearing is affected by a wide range of microorganisms that thrive in larviculture systems. Some seaweed species have metabolites capable of reducing the bacterial load. However, no studies have yet tested whether including seaweed metabolites on larval rearing systems has any effects on the larvae development. This work assessed the development of Sparus aurata larvae fed preys treated with an Asparagopsis armata product. Live prey, Brachionus spp. and Artemia sp., were immersed in a solution containing 0.5% of a commercial extract of A. armata (Ysaline 100, YSA) for 30 min, before being fed to seabream larvae (n = 4 each). In the control, the live feed was immersed in clear water. Larval parameters such as growth, survival, digestive capacity (structural-histology and functional-enzymatic activity), stress level (cortisol content), non-specific immune response (lysozyme activity), anti-bacterial activity (disc-diffusion assay) and microbiota quantification (fish larvae gut and rearing water) were monitored. Fish larvae digestive capacity, stress level and non-specific immune response were not affected by the use of YSA. The number of Vibrionaceae was significantly reduced both in water and larval gut when using YSA. Growth was enhanced for YSA treatment, but higher mortality was also observed, especially until 10 days after hatching (DAH). The mortality peak observed at 8 DAH for both treatments, but higher for YSA, indicates larval higher susceptibility at this development stage, suggesting that lower concentrations of YSA should be used until 10 DAH. The application of YSA after 10 DAH onwards promotes a safer rearing environment.