Browsing by Author "Fernandes, Jorge M. O."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Circulating small non-coding RNAs provide new insights into vitamin K nutrition and reproductive physiology in teleost fishPublication . I, Fernández; Fernandes, Jorge M. O.; Roberto, Vânia; Kopp, Martina; Oliveira, Catarina; Riesco, Marta F.; Dias, Jorge; Cox, Cymon J.; Leonor Cancela, M.; Cabrita, Elsa; Gavaia, PauloBackground: Vitamin K (VK) is a fat-soluble vitamin known for its essential role in blood coagulation, but also on other biological processes (e.g. reproduction, brain and bone development) have been recently suggested. Nevertheless, the molecular mechanisms behind its particular function on reproduction are not yet fully understood. Methods: The potential role of VK on reproduction through nutritional supplementation in Senegalese sole (Solea senegalensis) was assessed by gonadal maturation and 11-ketosterone, testosterone and estriol plasma levels when fed with control or VK supplemented (1250 mg kg(-1) of VK,) diets along a six month trial. At the end, sperm production and quality (viability and DNA fragmentation) were evaluated. Circulating small non-coding RNAs (sncRNAs) in blood plasma from males were also studied through RNA-Seq. Results: Fish fed with dietary VK supplementation had increased testosterone levels and lower sperm DNA fragmentation. SncRNAs from blood plasma were found differentially expressed when nutritional and sperm quality conditions were compared. PiR-675//676//4794//5462 and piR-74614 were found up-regulated in males fed with dietary VK supplementation. Let-7g, let-7e(18nt), let-7a-1, let-7a-3//7a-2//7a-1, let-7e(23nt) and piR-675//676//4794//5462 were found to be up-regulated and miR-146a and miR-146a-1//146a-2//146a-3 down-regulated when fish with low and high sperm DNA fragmentation were compared. Bioinformatic analyses of predicted mRNAs targeted by sncRNAs revealed the potential underlying pathways. Conclusions: VK supplementation improves fish gonad maturation and sperm quality, suggesting an unexpected and complex regulation of the nutritional status and reproductive performance through circulating sncRNAs. General significance: The use of circulating sncRNAs as reliable and less-invasive physiological biomarkers in fish nutrition and reproduction has been unveiled.
- Dietary protein complexity modulates growth, protein utilisation and the expression of protein digestion-related genes in Senegalese sole larvaePublication . Canada, Paula; Conceicao, Luis E. C.; Mira, Sara; Teodósio, Rita; Fernandes, Jorge M. O.; Barrios, Carmen; Millan, Francisco; Pedroche, Justo; Valente, Luisa M. P.; Engrola, SofiaGiven its complex metamorphosis and digestive system ontogeny, Senegalese sole larvae capacity to digest and utilize dietary protein is likely to change throughout development. In the present study, we hypothesized that the manipulation of dietary protein complexity may affect Senegalese sole larvae capacity to digest, absorb and retain protein during metamorphosis, as well as the mRNA expression of genes encoding for the precursors of proteolytic enzymes of the digestive tract and the enterocyte peptide transporter PepT1, which may have further impact on somatic growth. Three diets were formulated using approximately the same practical ingredients, except for the main protein source. The Intact diet protein content was mostly based on intact plant protein where the target peptide molecular weight (MW) would be > 70 kDa. The PartH diet protein fraction was mostly based on a protein hydrolysate with a high content of 5-70 kDa peptides. The HighH diet protein fraction was mostly based on a protein hydrolysate with a high content of 5 kDa peptides. A growth trial was performed with larvae reared at 19 degrees C under a co-feeding regime from mouth opening. The transcription of pga, tryp1c, ialp, ampn and pepT1 (encoding respectively for PepsinogenA, Trypsinogen1C, Intestinal alkaline phosphatase, Aminopeptidase N and for the enterocyte peptide transporter 1) was quantified by qPCR, during the metamorphosis climax (16 DAH) and after the metamorphosis was completed (28 DAH). An in vivo method of controlled tube-feeding was used to assess the effect on the larvae capacity to utilize polypeptides with different MW (1.0 and 7.2 kDa) representing a typical peptide MW of each of the hydrolysates included in the diets. The PartH diet stimulated growth in metamorphosing larvae (16 DAH), whereas the Intact diet stimulated growth after 36 DAH. The Intact diet stimulated the larvae absorption capacity for 1.0 kDa peptides at 16 DAH, which may have contributed for enhanced growth in later stages. The PartH diet stimulated the transcription of tryp1c and pept1 at 28 DAH, which seemed to reflect on increased post-larvae capacity to retain dietary 7.2 kDa polypeptides. That may indicate a possible strategy to optimize the digestion and utilisation of the PartH dietary protein, though it did not reflect into increased growth. The Intact diet promoted the transcription of pepsinogenA, which may reflect a reduced gastrointestinal transit time, which could have enhanced the dietary nutrients assimilation, ultimately improving growth. The present results suggest that, whereas pre-metamorphic sole larvae utilize better dietary protein with a moderate degree of hydrolysis, post-metamorphic sole make a greater use of intact protein.
- Kisspeptin influences the reproductive axis and circulating levels of microRNAs in Senegalese solePublication . Oliveira, Catarina; Fatsini, Elvira; Fernández, Ignacio; Anjos, Catarina; Chauvigné, François; Cerdà, Joan; Mjelle, Robin; Fernandes, Jorge M. O.; Cabrita, ElsaKisspeptin regulates puberty and reproduction onset, acting upstream of the brain-pituitary-gonad (HPG) axis. This study aimed to test a kisspeptin-based hormonal therapy on cultured Senegalese sole (G1) breeders, known to have reproductive dysfunctions. A single intramuscular injection of KISS2-10 decapeptide (250 µg/kg) was tested in females and males during the reproductive season, and gonad maturation, sperm motility, plasma levels of gonadotropins (Fsh and Lh) and sex steroids (11-ketotestosterone, testosterone and estradiol), as well as changes in small non-coding RNAs (sncRNAs) in plasma, were investigated. Fsh, Lh, and testosterone levels increased after kisspeptin injection in both sexes, while sperm analysis did not show differences between groups. Let7e, miR-199a-3p and miR-100-5p were differentially expressed in females, while miR-1-3p miRNA was up-regulated in kisspeptin-treated males. In silico prediction of mRNAs targeted by miRNAs revealed that kisspeptin treatment might affect paracellular transporters, regulate structural and functional polarity of cells, neural networks and intracellular trafficking in Senegalese sole females; also, DNA methylation and sphingolipid metabolism might be altered in kisspeptin-treated males. Results demonstrated that kisspeptin stimulated gonadotropin and testosterone secretion in both sexes and induced an unanticipated alteration of plasma miRNAs, opening new research venues to understand how this neuropeptide impacts in fish HPG axis.
- Lumpfish physiological response to chronic stressPublication . Lopes, Tiago da Santa; Costas, Benjamin; Ramos-Pinto, Lourenço; Reynolds, Patrick; Imsland, Albert K. D.; Fernandes, Jorge M. O.; Aragão, CláudiaIn this study, we explored the effects of chronic stress on lumpfish (Cyclopterus lumpus) physiological, immune response, health, and plasma free amino acids. 3 groups of lumpfish were exposed to 1-minute air exposure. 1 group was exposed to stress once per week, a second group exposed 2 times per week, and a third group exposed 4 times per week. The present study revealed significant alterations in immunity and increased nutritional demands, particularly the branched chain amino acids and lysine. Cortisol levels fluctuated, with significantly higher levels halfway through the experiment on the groups that were stressed more often. Though, by the end of the experiment, there were no significant differences in cortisol levels between groups. Regardless of stress exposure, cataract developed in virtually all sampled fish, pointing toward a potential dietary imbalance. A transient immunomodulation of stress was visible. While in early stages stress had an immune enhancing effect, as seen by the increase in plasma nitric oxide and peroxidase in the group most frequently exposed to stress, these differences were not apparent by the end of the experiment. Additionally, the worst health condition was found in this group. Our results underscore the complex interplay between stress, immunity and nutrition, highlighting the need for tailored dietary strategies and improved rearing practices.
- Sustainable fish meal-free diets for gilthead sea bream (Sparus aurata): integrated biomarker response to assess the effects on growth performance, lipid metabolism, antioxidant defense and immunological statusPublication . Fernandes, Ana M.; Calduch-Giner, Josep Àlvar; Pereira, Gabriella V.; Fachadas Gato Coelho Gonçalves, Ana Teresa; Dias, Jorge; Johansen, Johan; Silva, Tomé; Naya-Català, Fernando; Piazzon, Carla; Sitjà-Bobadilla, Ariadna; Costas, Benjamin; Conceição, Luís E. C.; Fernandes, Jorge M. O.; Pérez-Sánchez, JaumeThe growth of the aquaculture industry requires more sustainable and circular economy-driven aquafeed formulas. Thus, the goal of the present study was to assess in farmed gilthead sea bream (Sparus aurata L.) how different combinations of novel and conventional fish feed ingredients supported proper animal performance in terms of growth and physiological biomarkers of blood/liver/head kidney. A 77-day feeding trial was conducted with three experimental diets (PAP, with terrestrial processed animal protein from animal by-products; NOPAP, without processed animal protein from terrestrial animal by-products; MIX, a combination of alternative ingredients of PAP and NOPAP diets) and a commercial-type formulation (CTRL), and their effects on growth performance and markers of endocrine growth regulation, lipid metabolism, antioxidant defense and inflammatory condition were assessed at circulatory and tissue level (liver, head kidney). Growth performance was similar among all dietary treatments. However, fish fed the PAP diet displayed a lower feed conversion and protein efficiency, with intermediate values in MIX-fed fish. Such gradual variation in growth performance was supported by different biomarker signatures that delineated a lower risk of oxidation and inflammatory condition in NOPAP fish, in concurrence with an enhanced hepatic lipogenesis that did not represent a risk of lipoid liver degeneration.
- The supplementation of a microdiet with crystalline indispensable amino-acids affects muscle growth and the expression pattern of related genes in Senegalese sole (Solea senegalensis) larvaePublication . Canada, Paula; Engrola, S.; Mira, Sara; Teodósio, Rita; Fernandes, Jorge M. O.; Sousa, Vera; Barriga-Negra, Lúcia; Conceicao, Luis; Valente, Luisa M. P.The full expression of growth potential in fish larvae largely depends on an efficient protein utilization, which requires that all the indispensable amino acids (IAAs) are provided at an optimum ratio. The effect of supplementing a practical microdiet with encapsulated crystalline-AA to correct possible IAA deficiencies was evaluated in Senegalese sole larvae. Two isonitrogenous and isoenergetic microdiets were formulated and processed to have approximately the same ingredients and proximate composition. The control diet (CTRL) was based on protein sources commonly used in the aquafeed industry. In the supplemented diet (SUP) 8% of an encapsulated fish protein hydrolysate was replaced by crystalline-AA in order to increase the dietary IAA levels. The microdiets were delivered from mouth-opening upon a co-feeding regime until 51 days after hatching (DAH). The larvae capacity to utilize protein was evaluated using an in vivo method of controlled tube-feeding during relevant stages throughout development: pre-metamorphosis (13 DAH); metamorphosis climax (19 DAH) and metamorphosis completion (25 DAH). Somatic growth was monitored during the whole trial. A possible effect on the regulation of muscle growth was evaluated through muscle cellularity and the expression of related genes (myf5, myod2, myogenin, mrf4, myhc and mstn1) at metamorphosis climax (19 DAH) and at a juvenile stage (51 DAH). The SUP diet had a negative impact on larvae somatic growth after the metamorphosis, even though it had no effect on the development of Senegalese sole larvae capacity to retain protein. Instead, changes in somatic growth may reflect alterations on muscle growth regulation, since muscle cellularity suggested delayed muscle development in the SUP group at 51 DAH. Transcript levels of key genes regulating myogenesis changed between groups, during the metamorphosis climax and at the 51 DAH. The group fed the SUP diet had lower dnmt3b mRNA levels compared to the CTRL group. Further studies are needed to ascertain whether this would possibly lead to an overall DNA hypomethylation in skeletal muscle. (C) 2016 Elsevier B.V. All rights reserved.
- Thermal plasticity of the miRNA transcriptome during Senegalese sole developmentPublication . Campos, C.; Sundaram, Arvind Y. M.; Valente, L. M. P.; Conceição, L. E. C.; Engrola, S.; Fernandes, Jorge M. O.Several miRNAs are known to control myogenesis in vertebrates. Some of them are specifically expressed in muscle while others have a broader tissue expression but are still involved in establishing the muscle phenotype. In teleosts, water temperature markedly affects embryonic development and larval growth. It has been previously shown that higher embryonic temperatures promoted faster development and increased size of Senegalese sole (Solea senegalensis) larvae relatively to a lower temperature. The role of miRNAs in thermal-plasticity of growth is hitherto unknown. Hence, we have used high-throughput SOLiD sequencing to determine potential changes in the miRNA transcriptome in Senegalese sole embryos that were incubated at 15°C or 21°C until hatching and then reared at a common temperature of 21°C. Results: We have identified 320 conserved miRNAs in Senegalese sole, of which 48 had not been previously described in teleosts. mir-17a-5p, mir-26a, mir-130c, mir-206-3p, mir-181a-5p, mir-181a-3p and mir-199a-5p expression levels were further validated by RT- qPCR. The majority of miRNAs were dynamically expressed during early development, with peaks of expression at pre-metamorphosis or metamorphosis. Also, a higher incubation temperature (21°C) was associated with expression of some miRNAs positively related with growth (e.g., miR-17a, miR-181-5p and miR-206) during segmentation and at hatching. Target prediction revealed that these miRNAs may regulate myogenesis through MAPK and mTOR pathways. Expression of miRNAs involved in lipid metabolism and energy production (e.g., miR-122) also differed between temperatures. A miRNA that can potentially target calpain (miR-181-3p), and therefore negatively regulate myogenesis, was preferentially expressed during segmentation at 15°C compared to 21°C. Conclusions: Temperature has a strong influence on expression of miRNAs during embryonic and larval development in fish. Higher expression levels of miR-17a, miR-181-5p and miR-206-3p and down-regulation of miR-181a-3p at 21°C may promote myogenesis and are in agreement with previous studies in Senegalese sole, which reported enhanced growth at higher embryonic temperatures compared to 15°C. Moreover, miRNAs involved in lipid metabolism and energy production may also contribute to increased larval growth at 21°C compared to 15°C. Taken together, our data indicate that miRNAs may play a role in temperature-induced phenotypic plasticity of growth in teleosts.