Browsing by Author "Henriques, M."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- A revision of the status of Lepadogaster lepadogaster (Teleostei : Gobiesocidae): sympatric subspecies or a long misunderstood blend of species?Publication . Henriques, M.; Lourenço, R.; Almada, F.; Calado, G.; Gonçalves, D.; Guillemaud, Thomas; Cancela, M. Leonor; Almada, V. C.Molecular (partial mitochondrial 12S ribosomal DNA sequences), morphological and meristic analysis of Lepadogaster lepadogaster lepadogaster, L. l. purpurea and L. zebrina were performed to investigate the relationships between these taxa. On the western shore of mainland Portugal, where the two subspecies of L. lepadogaster occur sympatrically, they differ in microhabitat preferences and their breeding seasons are largely out of phase. This information, combined with data on distribution patterns, led to the following conclusions: Lepadogaster l. purpurea is considered to be a valid species, L. purpurea (Bonnaterre, 1788), different from L. l. lepadogaster, now designated L. lepadogaster (Bonnaterre, 1788). L. zebrina was found to be a synonym of L. lepadogaster. The two newly defined species were found to be in sympatry at Madeira and the Canary islands, the Atlantic coast of the Iberian Peninsula, and the Mediterranean at least as far as Genoa (Italy). Diagnostic characters and a list of synonyms are provided. (C) 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 76, 327-338.
- Assessment of catches, landings and fishing effort as useful tools for MPA managementPublication . Batista, M. I.; Horta e Costa, Bárbara; Gonçalves, L.; Henriques, M.; Erzini, Karim; Caselle, J. E.; Gonçalves, E. J.; Cabral, H. N.Marine protected areas (MPAs) have been widely recognized as a tool to achieve both fisheries management and conservation goals. Simultaneously achieving these multiple goals is difficult due to conflicts between conservation (often long-term) and economic (often short-term) objectives. MPA implementation often includes additional control measures on fisheries (e.g. vessel size restrictions, gear exclusion, catch controls) that in the short-term may have impacts on local fishers' communities. Thus, monitoring fisheries catches before, during and after MPA implementation is essential to document changes in fisheries activities and to evaluate the impact of MPAs in fishers' communities. Remarkably, in contrast with standard fisheries-independent biological surveys, these data are rarely measured at appropriate spatial scales following MPA implementation. Here, the effects of MPA implementation on local fisheries are assessed in a temperate MPA (Arrabida Marine Park, Portugal), using fisheries monitoring methods combining spatial distribution of fishing effort, on-board observations and official landings statistics at scales appropriate to the Marine Park. Fisheries spatial distribution, fishing effort, on-board data collection and official landings registered for the same vessels over time were analysed between 2004 and 2010. The applicability and reliability of using landings statistics alone was tested (i.e. when no sampling data are available) and we conclude that landings data alone only allow the identification of general patterns. The combination of landings information (which is known to be unreliable in many coastal communities) with other methods, provides an effective tool to evaluate fisheries dynamics in response to MPA implementation. As resources for monitoring socio-ecological responses to MPAs are frequently scarce, the use of landings data calibrated with fisheries information (from vessels, gear distribution and on-board data) is a valuable tool applicable to many worldwide coastal small-scale fisheries. (C) 2015 Elsevier B.V. All rights reserved.
- Biomares, a LIFE project to restore and manage the biodiversity of Prof. Luiz Saldanha Marine ParkPublication . Cunha, A. H.; Erzini, Karim; Serrão, Ester; Gonçalves, E.; Borges, R.; Henriques, M.; Henriques, Victor; Guerra, M.; Duarte, C.; Marba, N.; Fonseca, MThe Marine Park Prof. Luiz Saldanha, in the coast of Arrabida, is the first marine park in continental Portugal. This area is a Nature 2000 site and is considered to be a hotspot for European marine biodiversity. In 2005, the management plan of the park was implemented, ending several habitat menaces, thereby allowing an application to the LIFE-NATURE Programme. The LIFE-BIOMARES project aimed at the restoration and management of the biodiversity of the marine park through several actions. The restoration of the seagrass prairies that were completely destroyed by fishing activities and recreational boating, was one of the most challenging. It included the transplanting of seagrasses from donor populations and the germination of seagrass seeds for posterior plantation to maintain genetic diversity in the transplanted area. One of the most popular actions was the implementation of environmental friendly moorings to integrate recreational use of the area with environmental protection. Several dissemination and environmental education actions concerning the marine park and the project took place and contributed to the public increase of the park acceptance. The seabed habitats were mapped along the park and a surrounding area to 100 m depth in order to create a habitat cartography of the park and to help locate alternative fishing zones. Biodiversity assessments for macrofauna revealed seasonal variations and an effect of the protection status. Preliminary results are presented and show that the marine park regulations are having a positive effect on biodiversity conservation and sustainable fisheries, thereby showing that these kind of conservation projects are important to disseminate coastal conservation best practices. The Biomares project is a model project that can be followed in the implementation of marine reserves and the establishment of the Natura 2000 marine network.
- Extrusion of benzoic acid in Saccharomyces cerevisiae by an energy-dependent mechanismPublication . Henriques, M.; Quintas, Célia; Loureiro-Dias, M. C.When grown in the presence of benzoic acid, Saccharomyces cerevisiae was able to extrude [C-14]benzoic acid when a pulse of glucose was given to preloaded cells. While octanoic, sorbic, hexanoic, salicylic, butyric and propionic acids were also inducers, ethanol and acetic acid were not. The mechanism of extrusion required energy and prior growth in the presence of the inducers. Diethylstilbestrol, an inhibitor of ATPases, prevented benzoic acid extrusion. Propionic acid was not actively extruded in cells adapted to either benzoic or propionic acid, behaving as an appropriate probe to measure intracellular ph. Even though the extrusion mechanism was active, benzoic acid entered the cells by a simple diffusion mechanism.
- Problems in the use of benzoic acid for estimating the internal pH of yeastsPublication . Henriques, M.; Quintas, Célia; Loureiro-Dias, M. C.Some yeasts have the peculiar ability to grow in the presence of weak acids at rather low pH. These conditions are predominant in preserved foods and beverages such as fruit concentrates, juices, wine, where these yeasts are responsible for spoilage. The main preservatives currently utilized by food industries are sorbic, propionic, benzoic acids and SO2. It is usually assumed that weak acids diffuse through the plasma membrane in the undissociated form. In the cytoplasm, where the pH is higher, dissociation occurs resulting in accumulation of the lipid-insoluble anion and internal acidification. This is probably a very general mechanism of preventing microbial growth in foods.