Browsing by Author "Madureira, G."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Active learning in the detection of seismic events using artificial neural networksPublication . Ruano, Antonio; Madureira, G.In previous studies, a Support Vector Machine (SVM) was trained with a universe of data consisting of 3284 samples, which was divided into two sets, for training and validation, with approximately the same number of elements. Then put into practice a strategy of active learning having been obtained at the end an optimum detector for those sets. At this stage the objective was to apply the above active learning strategy, but now subjecting the detector for continuous recording on a system of sliding window, i.e., simulating a real environment detection. To prevent the unsustainable growth of training and validation sets, algorithms to reduce those sets were experimented, based on the presumed existence of redundant elements. Tests performed showed that the classifier performance improves over time when compared with the performance of the same classifier without applying the active learning strategy, given the same data. With another algorithm applied to reduce the validation set, tests showed an improvement of performance similar to that on previous experience, but without loss of performance regarding the original validation set.
- Detecção de eventos sísmicos utilizando redes neuronais artificiaisPublication . Madureira, G.; Ruano, AntonioThis experimental study focuses on a detection system at the seismic station level that should have a similar role to the detection algorithms based on the ratio STA / LTA. We tested two types of neural network: Multi-Layer Perceptrons and Support Vector Machines, trained in supervised mode. The universe of data consisted of 2903 patterns extracted from records of the PVAQ station, of the seismography network of the Institute of Meteorology of Portugal. The spectral characteristics of the records and its variation in time were reflected in the input patterns, consisting in a set of values of power spectral density in selected frequencies, extracted from a spectrogram calculated over a segment of record of pre-determined duration. The universe of data was divided, with about 60% for the training and the remainder reserved for testing and validation. To ensure that all patterns in the universe of data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. The best results, in terms of sensitivity and selectivity in the whole data ranged between 98% and 100%. These results compare very favorably with the ones obtained by the existing detection system, 50%.
- A neural network seismic detectorPublication . Madureira, G.; Ruano, AntonioAbstract: This experimental study focuses on a detection system at the seismic station level that should have a similar role to the detection algorithms based on the ratio STA/LTA. We tested two types of neural network: Multi-Layer Perceptrons and Support Vector Machines, trained in supervised mode. The universe of data consisted of 2903 patterns extracted from records of the PVAQ station, of the seismography network of the Institute of Meteorology of Portugal. The spectral characteristics of the records and its variation in time were reflected in the input patterns, consisting in a set of values of power spectral density in selected frequencies, extracted from a spectrogram calculated over a segment of record of pre-determined duration. The universe of data was divided, with about 60% for the training and the remainder reserved for testing and validation. To ensure that all patterns in the universe of data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. The best results, in terms of sensitivity and selectivity in the whole data ranged between 98% and 100%. These results compare very favorably with the ones obtained by the existing detection system, 50%.
- A neural network seismic detectorPublication . Madureira, G.; Ruano, AntonioThis experimental study focuses on a detection system at the seismic station level that should have a similar role to the detection algorithms based on the ratio STA/LTA. We tested two types of neural network: Multi-Layer Perceptrons and Support Vector Machines, trained in supervised mode. The universe of data consisted of 2903 patterns extracted from records of the PVAQ station, of the seismography network of the Institute of Meteorology of Portugal. The spectral characteristics of the records and its variation in time were reflected in the input patterns, consisting in a set of values of power spectral density in selected frequencies, extracted from a spectro gram calculated over a segment of record of pre-determined duration. The universe of data was divided, with about 60% for the training and the remainder reserved for testing and validation. To ensure that all patterns in the universe of data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. The best results, in terms of sensitivity and selectivity in the whole data ranged between 98% and 100%. These results compare very favorably with the ones obtained by the existing detection system, 50%.
- On-line operation of an intelligent seismic detectorPublication . Madureira, G.; Ruano, Antonio; Ruano, M. GraçaThis study describes the on-line operation of a seismic detection system to act at the level of a seismic station providing similar role to that of a STA / LTA ratio- based detection algorithms. The intelligent detector is a Support Vector Machine (SVM), trained with data consisting of 2903 patterns extracted from records of the PVAQ station, one of the seismographic network’s stations of the Institute of Meteorology of Portugal (IM). Records’ spectral variations in time and characteristics were reflected in the SVM input patterns, as a set of values of power spectral density at selected frequencies. To ensure that all patterns of the sample data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. After having been trained, the proposed system was experimented in continuous operation for unseen (out of sample) data, and the SVM detector obtained 97.7% and 98.7% of sensitivity and selectivity, respectively. The same type of ANN presented 88.4 % and 99.4% of sensitivity and selectivity when applied to data of a different seismic station of IM.
- On-line operation of an intelligent seismic detectorPublication . Madureira, G.; Ruano, Antonio; Ruano, M. GraçaThis study describes the on-line operation of a seismic detection system to act at the level of a seismic station providing similar role to that of a STA /LTA ratio-based detection algorithms. The intelligent detector is a Support Vector Machine (SVM), trained with data consisting of 2903 patterns extracted from records of the PVAQ station, one of the seismographic network's stations of the Institute of Meteorology of Portugal (IM). Records' spectral variations in time and characteristics were reflected in the SVM input patterns, as a set of values of power spectral density at selected frequencies. To ensure that all patterns of the sample data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. After having been trained, the proposed system was experimented in continuous operation for unseen (out of sample) data, and the SVM detector obtained 97.7% and 98.7% of sensitivity and selectivity, respectively. The same type of ANN presented 88.4 % and 99.4% of sensitivity and selectivity when applied to data of a different seismic station of IM. © 2013 Springer-Verlag Berlin Heidelberg.
- Seismic detection using support vector machinesPublication . Ruano, Antonio; Madureira, G.; Barros, O.; Khosravani, Hamid Reza; Ruano, M. Graça; Ferreira, P. M.This study describes research to design a seismic detection system to act at the level of a seismic station, providing a similar role to that of STA/LTA ratio-based detection algorithms. In a first step, Multi-Layer Perceptrons (MLPs) and Support Vector Machines (SVMs), trained in supervised mode, were tested. The sample data consisted of 2903 patterns extracted from records of the PVAQ station, one of the seismographic network’s stations of the Institute of Meteorology of Portugal (IM). Records’ spectral variations in time and characteristics were reflected in the input ANN patterns, as a set of values of power spectral density at selected frequencies. To ensure that all patterns of the sample data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. The proposed system best results, in terms of sensitivity and selectivity in the whole data ranged between 98% and 100%. These results compare very favourably with the ones obtained by the existing detection system, 50%, and with other approaches found in the literature. Subsequently, the system was tested in continuous operation for unseen (out of sample) data, and the SVM detector obtained 97.7% and 98.7% of sensitivity and selectivity, respectively. The classifier presented 88.4% and 99.4% of sensitivity and selectivity when applied to data of a different seismic station of IM. Due to the input features used, the average time taken for detection with this approach is in the order of 100 s. This is too long to be used in an early-warning system. In order to decrease this time, an alternative set of input features was tested. A similar performance was obtained, with a significant reduction in the average detection time (around 1.3 s). Additionally, it was experimentally proved that, whether off-line or in continuous operation, the best results are obtained when the SVM detector is trained with data originated from the respective seismic station.
- Seismic event detection with artificial neural networksPublication . Madureira, G.; Ruano, AntonioThis experimental study focuses on a detection system at the seismic station level that should have a similar role to the detection algorithms based on the ratio STA/LTA. We tested two types of neural network: Multi-Layer Perceptrons and Support Vector Machines, trained in supervised mode. The universe of data consisted of 2903 patterns extracted from records of the PVAQ station, of the seismography network of the Institute of Meteorology of Portugal. The spectral characteristics of the records and its variation in time were reflected in the input patterns, consisting in a set of values of power spectral density in selected frequencies, extracted from a spectrogram calculated over a segment of record of pre-determined duration. The universe of data was divided, with about 60% for the training and the remainder reserved for testing and validation. To ensure that all patterns in the universe of data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. The best results, in terms of sensitivity and selectivity in the whole data ranged between 98% and 100%. These results compare very favorably with the ones obtained by the existing detection system, 50%.
- A support vector machine seismic detector for early-warning applicationsPublication . Ruano, Antonio; Madureira, G.; Barros, O.; Khosravani, Hamid Reza; Ruano, M. Graça; Ferreira, P. M.This paper extends a Support Vector Machine (SVM) approach for the detection of seismic events, at the level of a seismic station. In previous works, it was shown that this approach produced excellent results, in terms of the Recall and Specificity measures, whether applied off-line or in a continuous scheme. The drawback was the time taken for achieving the detection, too large to be applied in a Early-Warning System (EWS). This paper shows that, by using alternative input features, a similar performance can be obtained, with a significant reduction in detection time. Additionally, it is experimentally proved that, whether off-line or in continuous operation, the best results are obtained when the SVM detector is trained with data originated from the respective seismic station.
