Browsing by Author "Madureira, Patricia"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Androgens and low density lipoprotein-cholesterol interplay in modulating prostate cancer cell fate and metabolismPublication . Cardoso, Henrique J.; Figueira, Marília I.; Carvalho, Tiago M.A.; Serra, Catarina D.M.; Vaz, Cátia V.; Madureira, Patricia; Socorro, SílviaBackground: Androgens, the known drivers of prostate cancer (PCa), have been indicated as important metabolic regulators with a relevant role in stimulating lipid metabolism. Also, the relationship between obesity and the aggressiveness of PCa has been established. However, it is unknown if the androgenic hormonal environment may alter the response of PCa cells to lipid availability. Purpose: The present study evaluated the effect of 5 alpha-dihydrotestosterone (DHT) in regulating lipid metabolism, and the interplay between this hormone and low-density lipoprotein (LDL)-cholesterol in modulating PCa cells fate.Methods: Non-neoplastic and neoplastic PCa cells were treated with 10 nM DHT, and the expression of fatty acids transporter, fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A) evaluated. PCa cells were also exposed to LDL (100 mu g/ml) in the presence or absence of DHT.Results: Treatment with DHT upregulated the expression of FASN and CPT1A in androgen-sensitive PCa cells. In contrast, LDL supplementation suppressed FASN expression regardless of the presence of DHT, whereas aug-menting CPT1A levels. Our results also showed that LDL-cholesterol increased PCa cells viability, proliferation, and migration dependently on the presence of DHT. Moreover, LDL and DHT synergistically enhanced the accumulation of lipid droplets in PCa cells.Conclusions: The obtained results show that androgens deregulate lipid metabolism and enhance the effects of LDL increasing PCa cells viability, proliferation and migration. The present findings support clinical data linking obesity with PCa and first implicate androgens in this relationship. Also, they sustain the application of phar-macological approaches targeting cholesterol availability and androgens signaling simultaneously.
- Annexin A2: The Importance of Being Redox SensitivePublication . Madureira, Patricia; Waisman, David M.Hydrogen peroxide (H2O2) is an important second messenger in cellular signal transduction. H2O2-dependent signalling regulates many cellular processes, such as proliferation, differentiation, migration and apoptosis. Nevertheless, H2O2 is an oxidant and a major contributor to DNA damage, protein oxidation and lipid peroxidation, which can ultimately result in cell death and/or tumourigenesis. For this reason, cells have developed complex antioxidant systems to scavenge ROS. Recently, our laboratory identified the protein, annexin A2, as a novel cellular redox regulatory protein. Annexin A2 possesses a reactive cysteine residue (Cys-8) that is readily oxidized by H2O2 and subsequently reduced by the thioredoxin system, thereby enabling annexin A2 to participate in multiple redox cycles. Thus, a single molecule of annexin A2 can inactivate several molecules of H2O2. In this report, we will review the studies detailing the reactivity of annexin A2 thiols and the importance of these reactive cysteine(s) in regulating annexin A2 structure and function. We will also focus on the recent reports that establish novel functions for annexin A2, namely as a protein reductase and as a cellular redox regulatory protein. We will further discuss the importance of annexin A2 redox regulatory function in disease, with a particular focus on tumour progression.
- DIVERSet JAG compounds inhibit topoisomerase II and are effective against adult and pediatric high-grade gliomasPublication . Howarth, Alison; Simms, Claire; Kerai, Nitesh; Allen, Olivia; Mihajluk, Karina; Madureira, Patricia; Sokratous, Giannis; Cragg, Simon; Lee, Sang Y.; Morley, Andy D.; Ashkan, Keyoumars; Cox, Paul A.; Pilkington, Geoffrey J.; Hill, RichardHigh-grade gliomas (HGGs) are aggressive primary brain tumors with local invasive growth and poor clinical prognosis in both adult and pediatric patients. Clinical response is compounded by resistance to standard frontline antineoplastic agents, an absence of novel therapeutics, and poor in vitro models to evaluate these. We screened a range of recently identified anticancer compounds in conventional adult, pediatric, and new biopsy-derived HGG models. These in vitro lines showed a range of sensitivity to standard chemotherapeutics, with varying expression levels of the prognostic markers hypoxia-induced factor (HIF) 1α and p53. Our evaluation of lead DIVERSet library compounds identified that JAG-6A, a compound that was significantly more potent than temozolomide or etoposide, was effective against HGG models in two-dimensional and three-dimensional systems; mediated this response by the potent inhibition of topoisomerase Iiα; remained effective under normoxic and hypoxic conditions; and displayed limited toxicity to non-neoplastic astrocytes. These data suggest that JAG-6A could be an alternative topoisomerase IIα inhibitor and used for the treatment of HGG.
- Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5 alpha-dihydrotestosterone regulationPublication . Cardoso, Henrique J.; Figueira, Marilia, I; Vaz, Catia V.; Carvalho, Tiago M. A.; Bras, Luis A.; Madureira, Patricia; Oliveira, Paulo J.; Sardao, Vilma A.; Socorro, SilviaPurpose Resistance to androgen-deprivation therapies and progression to so-called castrate-resistant prostate cancer (CRPC) remain challenges in prostate cancer (PCa) management and treatment. Among other alterations, CRPC has been associated with metabolic reprogramming driven by androgens. Here, we investigated the role of androgens in regulating glutaminolysis in PCa cells and determined the relevance of this metabolic route in controlling the survival and growth of androgen-sensitive (LNCaP) and CRPC (DU145 and PC3) cells. Methods PCa cells (LNCaP, DU145 and PC3) and 3-month old rats were treated with 5 alpha-dihydrotestosterone (DHT). Alternatively, LNCaP cells were exposed to the glutaminase inhibitor BPTES, alone or in combination with the anti-androgen bicalutamide. Biochemical, Western blot and extracellular flux assays were used to evaluate the viability, proliferation, migration and metabolism of PCa cells in response to DHT treatment or glutaminase inhibition. Results We found that DHT up-regulated the expression of the glutamine transporter ASCT2 and glutaminase, both in vitro in LNCaP cells and in vivo in rat prostate cells. BPTES diminished the viability and migration of PCa cells, while increasing caspase-3 activity. CRPC cells were found to be more dependent on glutamine and more sensitive to glutaminase inhibition. BPTES and bicalutamide co-treatment had an additive effect on suppressing LNCaP cell viability. Finally, we found that inhibition of glutaminolysis differentially affected glycolysis and lipid metabolism in both androgen-sensitive and CRPC cells. Conclusion Our data reveal glutaminolysis as a central metabolic route controlling PCa cell fate and highlight the relevance of targeting glutaminase for CRPC treatment.
- Mechanism of plasmin generation by S100A10Publication . Miller, Victoria A.; Madureira, Patricia; Kamaludin, Ain Adilliah; Komar, Jeffrey; Sharma, Vandna; Sahni, Girish; Thewell, Craig; Longstaff, Colin; Waisman, David M.Plasminogen (Pg) is cleaved to form plasmin by the action of specific plasminogen activators such as the tissue plasminogen activator (tPA). Although the interaction of tPA and Pg with the surface of the fibrin clot has been well characterised, their interaction with cell surface Pg receptors is poorly understood. S100A10 is a cell surface Pg receptor that plays a key role in cellular plasmin generation. In the present report, we have utilised domain-switched/deleted variants of tPA, truncated plasminogen variants and S100A10 site-directed mutant proteins to define the regions responsible for S100A10-dependent plasmin generation. In contrast to the established role of the finger domain of tPA in fibrin-stimulated plasmin generation, we show that the kringle-2 domain of tPA plays a key role in S100A10-dependent plasmin generation. The kringle-1 domain of plasminogen, indispensable for fibrin-binding, is also critical for S100A10-dependent plasmin generation. S100A10 retains activity after substitution or deletion of the carboxyl-terminal lysine suggesting that internal lysine residues contribute to its plasmin generating activity. These studies define a new paradigm for plasminogen activation by the plasminogen receptor, S100A10.
- Retraction note: TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKTPublication . Hill, Richard; Madureira, Patricia; Ferreira, Bibiana; Baptista, Ines; Machado, Susana; Colaҫo, Laura; dos Santos, Marta; Liu, Ningshu; Dopazo, Ana; Ugurel, Selma; Adrienn, Angyal; Kiss-Toth, Endre; Isbilen, Murat; Gure, Ali O.; Link, WolfgangThe authors have retracted this article as it has come to their attention that several images were inappropriately processed and duplicated in multiple figures. In particular, the data were duplicated, and in some cases inverted, across several panels in Figures 2c, 2b, 3d and Supplementary Figure 5. Erroneous data were also included in Figure 2e, Supplementary Figure 1 and Supplementary Figure 8. We apologize to the scientific community for any confusion this article may have caused. Richard Hill, Patricia Madureira, Bibiana I. Ferreira, Susana Machado, Ana Dopazo, Selma Ugurel, Endre Kiss-Toth, Murat isbilen and Wolfgang Link agree with this retraction. Inês Baptista, Laura Colaço, Marta dos Santos, Ningshu Liu, Angyal Adrienn and Ali O. Gure have not responded to correspondence from the Publisher about this retraction.
- The biochemistry and regulation of S100A10: a multifunctional plasminogen receptor involved in oncogenesisPublication . Madureira, Patricia; O'Connell, Paul A.; Surette, Alexi P.; Miller, Victoria A.; Waisman, David M.The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-alpha, interferon-gamma, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RAR alpha and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site.
- The role of Hypoxia in Glioblastoma radiotherapy resistancePublication . Chédeville, Agathe L.; Madureira, PatriciaGlioblastoma (GB) (grade IV astrocytoma) is the most malignant type of primary brain tumor with a 16 months median survival time following diagnosis. Despite increasing attention regarding the development of targeted therapies for GB that resulted in around 450 clinical trials currently undergoing, radiotherapy still remains the most clinically effective treatment for these patients. Nevertheless, radiotherapy resistance (radioresistance) is commonly observed in GB patients leading to tumor recurrence and eventually patient death. It is therefore essential to unravel the molecular mechanisms underpinning GB cell radioresistance in order to develop novel strategies and combinational therapies focused on enhancing tumor cell sensitivity to radiotherapy. In this review, we present a comprehensive examination of the current literature regarding the role of hypoxia (O2 partial pressure less than 10 mmHg), a main GB microenvironmental factor, in radioresistance with the ultimate goal of identifying potential molecular markers and therapeutic targets to overcome this issue in the future.
- TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKTPublication . Hill, Richard; Madureira, Patricia; Ferreira, Bibiana; Baptista, Inês; Machado, S.; Colaco, Laura; dos Santos, Marta; Liu, Ningshu; Dopazo, Ana; Ugurel, Selma; Adrienn, Angyal; Kiss-Toth, Endre; Isbilen, Murat; Gure, Ali O.; Link, WolfgangIntrinsic and acquired resistance to chemotherapy is the fundamental reason for treatment failure for many cancer patients. The identification of molecular mechanisms involved in drug resistance or sensitization is imperative. Here we report that tribbles homologue 2 (TRIB2) ablates forkhead box O activation and disrupts the p53/MDM2 regulatory axis, conferring resistance to various chemotherapeutics. TRIB2 suppression is exerted via direct interaction with AKT a key signalling protein in cell proliferation, survival and metabolism pathways. Ectopic or intrinsic high expression of TRIB2 induces drug resistance by promoting phospho-AKT (at Ser473) via its COP1 domain. TRIB2 expression is significantly increased in tumour tissues from patients correlating with an increased phosphorylation of AKT, FOXO3a, MDM2 and an impaired therapeutic response. This culminates in an extremely poor clinical outcome. Our study reveals a novel regulatory mechanism underlying drug resistance and suggests that TRIB2 functions as a regulatory component of the PI3K network, activating AKT in cancer cells.