Browsing by Author "Malcata, F. Xavier"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Anti-Hepatocellular Carcinoma (HepG2) activities of Monoterpene Hydroxy Lactones isolated from the Marine Microalga Tisochrysis LuteaPublication . Gangadhar, Katkam N.; Rodrigues, Maria Joao; Pereira, Hugo; Gaspar, Helena; Malcata, F. Xavier; Barreira, Luísa; Varela, JoãoTisochrysis lutea is a marine haptophyte rich in omega-3 polyunsaturated fatty acids (e.g., docosahexaenoic acid (DHA)) and carotenoids (e.g., fucoxanthin). Because of the nutraceutical applications of these compounds, this microalga is being used in aquaculture to feed oyster and shrimp larvae. In our earlier report, T. lutea organic crude extracts exhibited in vitro cytotoxic activity against human hepatocarcinoma (HepG2) cells. However, so far, the compound(s) accountable for the observed bioactivity have not been identified. Therefore, the aim of this study was to isolate and identify the chemical component(s) responsible for the bioactivity observed. Bioassay-guided fractionation through a combination of silica-gel column chromatography, followed by preparative thin layer chromatography (PTLC), led to the isolation of two diastereomers of a monoterpenoid lactone, namely, loliolide (1) and epi-loliolide (2), isolated for the first time in this species. The structural elucidation of both compounds was carried out by GC-MS and 1D (1H and 13C APT) and 2D (COSY, HMBC, HSQC-ed, and NOESY) NMR analysis. Both compounds significantly reduced the viability of HepG2 cells and were considerably less toxic towards a non-tumoral murine stromal (S17) cell line, although epi-loliolide was found to be more active than loliolide.
- Diel biochemical and photosynthetic monitorization of Skeletonema costatum and Phaeodactylum tricornutum grown in outdoor pilot-scale flat panel photobioreactorsPublication . Maia, Inês Beatriz; Carneiro, Mariana; Magina, Tânia; Malcata, F. Xavier; Otero, Ana; Navalho, João; Varela, João; Pereira, HugoDiatoms are currently considered valuable feedstocks for different biotechnological applications. To deepen the knowledge on the production of these microalgae, the diel pattern of batch growth, photosystem II performance, and accumulation of target metabolites of two commercially relevant diatoms, Phaeodactylum tricornutum and Skeletonema costatum, were followed outdoors in 100-L flat panel photobioreactors. S. costatum presented a higher light-to-biomass conversion resulting in higher growth than P. tricornutum. Both fluorescence data and principal component analysis pointed to temperature as a limiting factor for the growth of P. tricornutum. Higher protein and carbohydrate contents were found in P. tricornutum, whereas S. costatum fatty acids were charac-terized by a higher unsaturation degree. Higher productivities were found at 1 p.m. for protein, lipid, and ash in the case of S. costatum. Overall, S. costatum showed great potential for outdoor cultivation, revealing a broader temperature tolerance and increased biomass productivity than P. tricornutum.
- Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient sourcePublication . Carneiro, Mariana; Ranglová, Karolína; Lakatos, Gergely Ernő; Câmara Manoel, João Artur; Grivalský, Tomáš; Kozhan, Daniyar Malikuly; Toribio, Ana; Moreno, Joaquín; Otero, Ana; Varela, João; Malcata, F. Xavier; Suárez Estrella, Francisca; Acién-Fernándéz, Francisco Gabriel; Molnár, Zoltán; Ördög, Vince; Masojídek, JiříThe application of microalgae in wastewater treatment has recently been at the forefront of interest due to the increasing concern about environmental protection and economic sustainability. This work aimed to study two chlorophyte species, Chlorella vulgaris and Scenedesmus acutus, co-cultured outdoors in centrate of municipal wastewater as a nutrient source. Two different thin-layer units were used in these trials & mdash; thin-layer cascade (TLC) and thin-layer raceway pond (TL-RWP), suitable for this purpose due to their high biomass productivity and better culture transparency when using muddy wastewater. The units were operated in batch, and subsequently in semi-continuous growth regime & mdash; and monitored in terms of photosynthetic performance, growth, nutrient removal rate, and bioactivity. The results showed that the co-cultures grew well in the centrate, achieving the maximum biomass densities of 1.3 and 2.1 g DW L-1 in TLC and TL-RWP, respectively, by the end of the batch regime and 1.9 and 2.0 g DW L-1 by the end of the semi-continuous regime. Although TL-RWP grown cultures showed faster growth, the TLC-one revealed better nutrient removal efficiencies batch wise than the culture grown in TL-RWP & mdash; removing up to 48% of total nitrogen and 43% of total phosphorus. Conversely, the latter was more efficient under the semi-continuous regime (54% and 42% consumption of total nitrogen and phosphorus, respectively). In the harvested biomass, an important antimicrobial activity (specifically antifungal) was detected. In this sense, the in-vitro growth of the oomycete Pythium ultimum was inhibited by up to 45% with regard to the control. However, no biostimulating activity was observed. The present findings confirm the possibility of using these two species for biomass production in municipal wastewater centrate using highly productive thin-layer systems. This technology can be a valuable contribution to circular economy since the produced biomass can be re-applied for agricultural purposes.
- Isolation of a euryhaline microalgal strain, Tetraselmis sp CTP4, as a robust feedstock for biodiesel productionPublication . Pereira, Hugo; Gangadhar, Katkam N.; Schulze, Peter S.C.; Santos, Tamara; de Sousa, Carolina Bruno; Schueler, Lisa; Custódio, Luísa; Malcata, F. Xavier; Gouveia, Luísa; Varela, J.; Barreira, LuísaBioprospecting for novel microalgal strains is key to improving the feasibility of microalgae-derived biodiesel production. Tetraselmis sp. CTP4 (Chlorophyta, Chlorodendrophyceae) was isolated using fluorescence activated cell sorting (FACS) in order to screen novel lipid-rich microalgae. CTP4 is a robust, euryhaline strain able to grow in seawater growth medium as well as in non-sterile urban wastewater. Because of its large cell size (9-22 mu m), CTP4 settles down after a six-hour sedimentation step. This leads to a medium removal efficiency of 80%, allowing a significant decrease of biomass dewatering costs. Using a two-stage system, a 3-fold increase in lipid content (up to 33% of DW) and a 2-fold enhancement in lipid productivity (up to 52.1 mg L-1 d(-1)) were observed upon exposure to nutrient depletion for 7 days. The biodiesel synthesized from the lipids of CTP4 contained high levels of oleic acid (25.67% of total fatty acids content) and minor amounts of polyunsaturated fatty acids with >= 4 double bonds (< 1%). As a result, this biofuel complies with most of the European (EN14214) and American (ASTM D6751) specifications, which commonly used microalgal feedstocks are usually unable to meet. In conclusion, Tetraselmis sp. CTP4 displays promising features as feedstock with lower downstream processing costs for biomass dewatering and biodiesel refining.
- Microalgae-based unsaponifiable matter as source of natural antioxidants and metal chelators to enhance the value of wet Tetraselmis chuii biomassPublication . Gangadhar N. Katkam, Dr.; H., Pereira; Rodrigues, Maria João; L, Custódio; Barreira, Luísa; Malcata, F. Xavier; J. C. or Varela J. or Varela J.C.S., VarelaThe present work aimed to determine the antioxidant, metal chelating and neuroprotective potential of the unsaponifiable matter (UM) of Tetraselmis chuii to be applied to a biorefinery setting. The UM obtained via saponification from crude lipids extracted from microalgal wet biomass showed a radical scavenging activity (RSA) towards the DPPH radical of 90.7 +/- 1.3% and 57.1 +/- 1.2% at a concentration of 10 and 5 mg/ mL, respectively. The UM fraction also displayed metal chelating capacity at a concentration of 5 mg/ mL: 58.5 +/- 1.4% and 50.9 +/- 4.0% for copper and iron, respectively. The chemical characterization of the UM revealed significant levels of total phenolics (TPC, 13.61 mg GAE/g) and carotenoids (2.45 mg/g of beta-carotene, lutein and violaxanthin). Overall, the separation of the UM containing high value metabolites might significantly upgrade the total wet biomass value in a biorefinery, allowing the exploitation of a stream with relevant antioxidant and metal chelating activities.
