Browsing by Author "Marques, António"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Bioaccessibility of lipophilic and hydrophilic marine biotoxins in seafood: an in vitro digestion approachPublication . Alves, Ricardo N.; Rambla-Alegre, Maria; Braga, Ana Catarina; Maulvault, Ana L.; Barbosa, Vera; Campàs, Mònica; Reverté, Laia; Flores, Cintia; Caixach, Josep; Kilcoyne, Jane; Costa, Pedro Reis; Diogène, Jorge; Marques, AntónioThis study aimed to assess the bioaccessibility of different marine biotoxins in naturally contaminated shellfish and fish gonads using an in vitro digestion methodology. In general, hydrophilic toxins (domoic acid, paralytic shellfish poisoning toxins and tetrodotoxins) showed higher bioaccessibility than lipophilic ones (okadaic acid and azaspiracids). The bioaccessibility of toxins from the okadaic acid group ranged from 69% (raw European razor clams) to 74% (raw donax clams). Regarding azaspiracids, 47% of the initial content was bioaccessible in steamed blue mussel. As for hydrophilic toxins, 100% of the initial content was bioaccessible after digestion in raw shellfish and puffer fish gonads. The total tetrodotoxin bioaccessibility in puffer fish gonads decreased significantly after steaming. The profile of tetrodotoxins changed during the digestion process: TTX and 11-norTTX-6S-ol analogues decreased significantly after digestion, but the 5,6,11-trideoxy TTX analogue increased in both raw and steamed puffer fish gonads. These preliminary findings confirm the need to consider bioaccessibility data in future seafood risk assessment, as such information enables a more accurate and realistic estimation of potential seafood hazards, particularly in what concerns lipophilic toxins, therefore, constituting a crucial tool in the refinement of regulatory limits for the presence of biotoxins in seafood.
- Eco-innovative aquafeeds biofortified with asparagopsis taxiformis to improve the resilience of farmed white seabream (Diplodus sargus) to marine heatwave eventsPublication . Marmelo, Isa; Lourenço-Marques, Cátia; Silva, Iris A.L.; Soares, Florbela; Pousão-Ferreira, Pedro; Mata, Leonardo; Marques, António; Diniz, Mário Sousa; Maulvault, Ana LuísaExtreme weather events, like marine heatwaves (MHWs), are becoming more frequent and severe due to climate change, posing several challenges to marine ecosystems and their services. As disease outbreaks are often prompted by these acute phenomena, it is essential to develop ecoinnovative strategies that can efficiently improve farmed fish resilience, especially under suboptimal rearing conditions, thereby ensuring a sustainable aquaculture production. This study aimed to unveil farmed juvenile white seabream ( Diplodus sargus, , 28.50 +/- 1.10 g weight, n = 150) immune and antioxidant responses under a category II MHW in the Mediterranean Sea (+4 degrees C, 8 days of temperature increase plus 15 days of plateau at the peak temperature) and to investigate whether a 30 days period of prophylactic biofortification with Asparagopsis taxiformis (1.5 %, 3 % and 6 %) enhanced fish resilience to these extreme events. Several biomarkers from different organization levels (individual, cellular, biochemical and molecular) were assessed upon 30 days of biofortification (T30), exposure (after 8 days of temperature increase + 15 days at peak temperature, T53) and recovery (8 days of temperature decrease, T61) from the MHW. Results showed that MHW negatively affected the fish physiological status and overall wellbeing, decreasing specific growth rate (SGR) and haematocrit (Ht) and increasing erythrocyte nuclear abnormalities (ENAs) and lipid peroxidation (LPO). These adverse effects were alleviated through biofortification with A. taxiformis. . Seaweed inclusion at 1.5 % was the most effective dose to minimize the severity of MHW effects, significantly improving immune responses of D. sargus (i.e. increased levels of immunoglobulin M, peroxidase activity and lysozyme expression) and modulating antioxidant responses (i.e. decreased LPO, catalase and glutathione S-transferase activity). These findings confirm that A. taxiformis is a functional ingredient of added value to the aquaculture industry, as its inclusion in marine fish diets can beneficially modulate fish immunity and resilience under optimal and adverse rearing conditions.
- In vitro bioaccessibility of the marine biotoxin okadaic acid in shellfishPublication . Braga, Ana C.; Alves, Ricardo N.; Maulvault, Ana L.; Barbosa, Vera; Marques, António; Costa, Pedro R.Okadaic acid (OA) and their derivatives are marine toxins responsible for the human diarrhetic shellfish poisoning (DSP). To date the amount of toxins ingested in food has been considered equal to the amount of toxins available for uptake by the human body. In this study, the OA fraction released from the food matrix into the digestive fluids (bioaccessibility) was assessed using a static in vitro digestion model. Naturally contaminated mussels (Mytilus galloprovincialis) and donax clams (Donax sp.), collected from the Portuguese coast, containing OA and dinophysistoxin-3 (DTX3) were used in this study. Bioaccessibility of OA total content was 88% and 75% in mussels and donax clams, respectively. Conversion of DTX3 into its parent compound was verified during the simulated digestive process and no degradation of these toxins was found during the process. This is the first study assessing the bioaccessibility of OA group toxins in naturally contaminated seafood. This study provides relevant new data that can improve and lead to more accurate food safety risk assessment studies concerning these toxins. (C) 2016 Elsevier Ltd. All rights reserved.
- Paralytic shellfish toxins and ocean warming: bioaccumulation and ecotoxicological responses in jujvenile Gilthead Seabream (Sparus aurata)Publication . Barbosa, Vera; Santos, Marta; Anacleto, Patrícia; Maulvault, Ana Luísa; Pousão-Ferreira, Pedro; Reis Costa, Pedro; Marques, AntónioWarmer seawater temperatures are expected to increase harmful algal blooms (HABs) occurrence, intensity, and distribution. Yet, the potential interactions between abiotic stressors and HABs are still poorly understood from ecological and seafood safety perspectives. The present study aimed to investigate, for the first time, the bioaccumulation/depuration mechanisms and ecotoxicological responses of juvenile gilthead seabream (Sparus aurata) exposed to paralytic shellfish toxins (PST) under different temperatures (18, 21, 24 °C). PST were detected in fish at the peak of the exposure period (day five, 0.22 µg g-1 N-sulfocarbamoylGonyautoxin-1-2 (C1 and C2), 0.08 µg g-1 Decarbamoylsaxitoxin (dcSTX) and 0.18 µg g-1 Gonyautoxin-5 (B1)), being rapidly eliminated (within the first 24 h of depuration), regardless of exposure temperature. Increased temperatures led to significantly higher PST contamination (275 µg STX eq. kg-1). During the trial, fish antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; glutathione S-transferase, GST) in both muscle and viscera were affected by temperature, whereas a significant induction of heat shock proteins (HSP70), Ubiquitin (Ub) activity (viscera), and lipid peroxidation (LPO; muscle) was observed under the combination of warming and PST exposure. The differential bioaccumulation and biomarker responses observed highlight the need to further understand the interactive effects between PST and abiotic stressors, to better estimate climate change impacts on HABs events, and to develop mitigation strategies to overcome the potential risks associated with seafood consumption.
- The impact of climate Change on bivalve farming: combined effect of temperature and salinity on survival and feeding Behavior of clams Ruditapes decussatusPublication . Rato, Ana; Joaquim, Sandra; Matias, Ana Margarete; Roque, Cláudia; Marques, António; Matias, DomitíliaEuropean clam (Ruditapes decussatus) is one of the most relevant emergent bivalve species from the aquaculture sector in Europe with high economic value. Climate changes represent a potential limiting factor to this activity, directly interfering with the survival and behavior of bivalves. Severe fluctuations in temperature along with periods of heavy rainfall or periods of drought that significantly change the salinity can promote physiological stress in bivalves, resulting in changes in physiological and behavioral responses and, in extreme cases, leading to high mortalities. This study aimed to evaluate the combined effect of temperature and salinity on mortality and feeding behavior of R. decussatus. Juveniles and adults were exposed to combined ranges of temperature (5 degrees C-35 degrees C) and salinity (0-40). Mortality and feeding behavior were registered every 24 h of each 120-h trial. A control temperature range was set between 15 degrees C and 23 degrees C, where mortality and feeding behavior were considered as the normal scenario. Our data suggested salinity 15 as a "turning point," a point from which occurred distinct patterns in mortality and feeding behavior. The results evidently indicate that abrupt reductions in salinity and sharp increases in temperature will lead to high mortality of R. decussatus. Juveniles were revealed to be more sensitive to the increase of temperature in a less saline environment, to suffer greater and faster mortalities, and to be more resistant to extremely high temperatures under more saline conditions. The high temperatures and sporadic heavy rainfall that are predicted to occur in the south of Europe due to climate changes will contribute to compromise the recruitment of European clam, thus threatening the production of this species and consequently impacting the economic sector.