Browsing by Author "Martins, Gil"
Now showing 1 - 10 of 16
Results Per Page
Sort Options
- Analysis of sperm quality in a type I diabetes zebrafish modelPublication . Diogo, Patricia; Eufrásio, Ana; Martins, Gil; Cardeira, João; Cancela, M. Leonor; Cabrita, Elsa; Gavaia, PauloDiabetes is a fast growing disease in human populaon and the study of its impact on mammalian reproducve traits has been con-troversial. Some authors showed a negave eect on sperm mol-ity and DNA fragmentaon in some species, while others failed to detect any eects. In the present study zebrash was used as a model to study the eect of diabetes in sperm traits such as mol-ity, viability and DNA fragmentaon
- Anti-osteogenic activity of cadmium in zebrafishPublication . Tarasco, Marco; Cardeira Da Silva, João; Viegas, Michael; Caria, Joana; Martins, Gil; Gavaia, Paulo; Cancela, M. Leonor; Laizé, VincentAmong the many anthropogenic chemicals that end up in the aquatic ecosystem, heavy metals, in particular cadmium, are hazardous compounds that have been shown to affect developmental, reproductive, hepatic, hematological, and immunological functions in teleost fish. There is also evidence that cadmium disturbs bone formation and skeletal development, but data is scarce. In this work, zebrafish was used to further characterize the anti-osteogenic/osteotoxic effects of cadmium and gain insights into underlying mechanisms. Upon exposure to cadmium, a reduction of the opercular bone growth was observed in 6-days post-fertilization (dpf) larvae and an increase in the incidence of skeletal deformities was evidenced in 20-dpf post-larvae. The extent and stiffness of newly formed bone was also affected in adult zebrafish exposed to cadmium while regenerating their caudal fin. A pathway reporter assay revealed a possible role of the MTF-1 and cAMP/PKA signaling pathways in mechanisms of cadmium osteotoxicity, while the expression of genes involved in osteoblast differentiation and matrix production was strongly reduced in cadmium-exposed post-larvae. This work not only confirmed cadmium anti-osteogenic activity and identified targeted pathways and genes, but it also suggested that cadmium may affect biomechanical properties of bone.
- Cdkl5 mutant zebrafish shows skeletal and neuronal alterations mimicking human CDKL5 deficiency disorderPublication . Varela, Tatiana; Varela, Débora; Martins, Gil; Conceição, Natércia; Cancela, M. LeonorCDKL5 deficiency disorder (CDD) is a rare neurodevelopmental condition characterized primarily by seizures and impairment of cognitive and motor skills. Additional phenotypes include microcephaly, dysmorphic facial features, and scoliosis. Mutations in cyclin-dependent kinase-like 5 (CDKL5) gene, encoding a kinase essential for normal brain development and function, are responsible for CDD. Zebrafish is an accepted biomedical model for the study of several genetic diseases and has many advantages over other models. Therefore, this work aimed to characterize the phenotypic, behavioral, and molecular consequences of the Cdkl5 protein disruption in a cdkl5 mutant zebrafish line (sa21938). cdkl5(sa21938) mutants displayed a reduced head size, suggesting microcephaly, a feature frequently observed in CDD individuals. Double staining revealed shorter craniofacial cartilage structures and decrease bone mineralization in cdkl5 homozygous zebrafish indicating an abnormal craniofacial cartilage development and impaired skeletal development. Motor behavior analysis showed that cdkl5(sa21938) embryos had less frequency of double coiling suggesting impaired glutamatergic neurotransmission. Locomotor behavior analysis revealed that homozygous embryos swim shorter distances, indicative of impaired motor activity which is one of the main traits of CCD. Although no apparent spontaneous seizures were observed in these models, upon treatment with pentylenetetrazole, seizure behavior and an increase in the distance travelled were observed. Quantitative PCR showed that neuronal markers, including glutamatergic genes were dysregulated in cdkl5(sa21938) mutant embryos. In conclusion, homozygous cdkl5(sa21938) zebrafish mimic several characteristics of CDD, thus validating them as a suitable animal model to better understand the physiopathology of this disorder.
- Comparison of different microalgae biomass typologies used in rotifers enrichment for zebrafish (Danio rerio) larvae nutritionPublication . de Castro, Daniela; Castaldi, Matthew; Martins, Gil; Santos, Tamara; Pereira, Hugo; Diogo, Patrícia; Varela, João; Gavaia, Paulo; Shivendra KumarThe use of enriched rotifers with industrially produced microalgae represents a valuable tool for the enhancement of zebrafishlarval nutrition and increased biological performance. Currently, a monoculture of microalgal species (Nannochloropsis sp.) inform of liquid paste is routinely used for rotifers enrichment for zebrafish larvae feeding; however, the most adequate typology (i.e.,paste or freeze-dried) of the industrially produced microalgal biomass is still controversial. This work aimed to compare the effectsof rotifers enriched with three different industrially produced microalgae species (i.e., Nannochloropsis oceanica, Tetraselmis chui,and Tisochrysis lutea) using paste and freeze-dried powder. Enriched rotifers were provided as feed during larval growth and theimpact on growth and survival was evaluated. The use of enriched rotifers with both paste or freeze-dried microalgae improvedgrowth compared to larvae fed exclusively with commercial microdiet. Larvae fed rotifers enriched with N. oceanica and T. chuiattained higher weight and length both at 15 and 30 days postfertilization (dpf ), while the use of microalgae in paste contributed togreater larvae lengths when compared to freeze-dried. The experimental results in this study revealed that N. oceanica and T. chuiin paste are the most suitable microalgae forms to be used in zebrafish larvae nutrition and in the improvement of enrichmentmethodologies for rotifers.
- Cryoprotectants synergy improve zebrafish sperm cryopreservation and offspring skeletogenesisPublication . Diogo, Patricia; Martins, Gil; Nogueira, Rita; Marreiros, Ana; Gavaia, Paulo; Cabrita, ElsaThe synergy obtained by the combination of cryoprotectants is a successful strategy that can be beneficial on the optimization of zebrafish sperm cryopreservation. Recently, a protocol was established for this species using an electric ultrafreezer (-150 degrees C) performing cooling rate (-66 degrees C/min) and storage within one step. The ultimate objective of sperm cryopreservation is to generate healthy offspring. Therefore, the objective of this study was to select the most adequate cryoprotectant combination, for the previously established protocol, that generate high quality offspring with normal skeletogenesis. Among the permeating cryoprotectant concentrations studied 12.5% and 15% of N,N-dimethylformamide (DMF) yielded high post-thaw sperm quality and hatching rates. For these two concentrations, the presence of bovine serum albumin (10 mg/mL), egg yolk (10%), glycine (30 mM) and bicine (50 mM) was evaluated for post-thaw sperm motility, viability, in vitro fertilization success and offspring skeletal development (30 days post fertilization). Higher concentration of permeating cryoprotectant (15%) decreased the incidence of deformed arches and severe skeletal malformations, which suggests higher capacity to protect the cell against cold stress and DNA damage. Extender containing 15% DMF with Ctrl, Bicine and egg yolk were the non-permeating cryoprotectants with higher post-thaw quality. The use of these compounds results in a reduction in vertebral fusions, compressions and severity of skeletal malformations in the offspring. Therefore, these extender compositions are beneficial for the quality of zebrafish offspring sired by cryopreserved sperm with 66 degrees C/min freezing rate. To the best of our knowledge, this is the first report on skeletal development of the offspring sired by cryopreserved sperm performed with different freezing media compositions in zebrafish.
- Early transition to microdiets improves growth, reproductive performance and reduces skeletal anomalies in Zebrafish (Danio rerio)Publication . Martins, Gil; Diogo, Patricia; Pinto, Wilson; Gavaia, PauloZebrafish is a model species with a high variability of feeding regimes among fish facilities. The use of live feeds for early life stages is a common practice, and few studies have focused early weaning into microdiets. The lack of standardized feeding protocols among research facilities promotes discrepancies in biological performances, and few studies relate dietary regimes to zebrafish development. The objective of this work was to assess the effect of an early transition into microdiets in zebrafish development by evaluating growth, survival, reproductive performance, and skeletal anomalies. These parameters were assessed in one group exclusively fed on Artemia nauplii and two groups fed on microdiets (commercial and experimental). Results showed that an early weaning with the two microdiets significantly improved zebrafish growth and reproductive performance, while a decrease in incidence of vertebral column anomalies was observed. A high survival was also maintained in fish fed microdiets at an early developmental stage when comparing to exclusive Artemia nauplii feeding. In conclusion, early weaning with high quality microdiets is beneficial for zebrafish growth, reproductive performance, and skeletal development, contributing to the standardization of zebrafish husbandry practices.
- Effects of pristine or contaminated polyethylene microplastics on zebrafish developmentPublication . Tarasco, Marco; Gavaia, Paulo; Bensimon-Brito, Anabela; Cordelières, Fabrice P.; Santos, Tamara; Martins, Gil; De Castro, Daniela; Silva, Nadia; Cabrita, Elsa; Bebianno, Maria; Stainier, Didier Y.R.; Cancela, M. Leonor; Laizé, VincentThe presence of microplastics in the aquatic ecosystem represents a major issue for the environment and human health. The capacity of organic pollutants to adsorb onto microplastic particles raises additional concerns, as it creates a new route for toxic compounds to enter the food web. Current knowledge on the impact of pristine and/or contaminated microplastics on aquatic organisms remains insufficient, and we provide here new insights by evaluating their biological effects in zebrafish (Danio rerio). Zebrafish larvae were raised in ZEB316 stand-alone housing systems and chronically exposed throughout their development to polyethylene particles of 20-27 mu m, pristine (MP) or spiked with benzo[alpha]pyrene (MP-BaP), supplemented at 1% w/w in the fish diet. While they had no effect at 30 days post-fertilization (dpf), MP and MP-BaP affected growth parameters at 90 and 360 dpf. Relative fecundity, egg morphology, and yolk area were also impaired in zebrafish fed MP-BaP. Zebrafish exposed to experimental diets exhibited an increased incidence of skeletal deformities at 30 dpf as well as an impaired development of caudal fin/scales, and a decreased bone quality at 90 dpf. An intergenerational bone formation impairment was also observed in the offspring of parents exposed to MP or MP-BaP through a reduction of the opercular bone in 6 dpf larvae. Beside a clear effect on bone development, histological analysis of the gut revealed a reduced number of goblet cells in zebrafish fed MP-BaP diet, a sign of intestinal inflam-mation. Finally, exposure of larvae to MP-BaP up-regulated the expression of genes associated with the BaP response pathway, while negatively impacting the expression of genes involved in oxidative stress. Altogether, these data suggest that long-term exposure to pristine/contaminated microplastics not only jeopardizes fish growth, reproduction performance, and skeletal health, but also causes intergenerational effects.
- Exogenous WNT5A and WNT11 proteins rescue CITED2 dysfunction in mouse embryonic stem cells and zebrafish morphantsPublication . Santos, João; Mendes-Silva, Leonardo; Afonso,Vanessa; Martins, Gil; Machado, Rui; Lopes, Joao; Cancela, M. Leonor; Futschik, Matthias; Sachinidis, Agapios; Gavaia, Paulo; Bragança, JoséMutations and inadequate methylation profiles of CITED2 are associated with human congenital heart disease (CHD). In mouse, Cited2 is necessary for embryogenesis, particularly for heart development, and its depletion in embryonic stem cells (ESC) impairs cardiac differentiation. We have now determined that Cited2 depletion in ESC affects the expression of transcription factors and cardiopoietic genes involved in early mesoderm and cardiac specification. Interestingly, the supplementation of the secretome prepared from ESC overexpressing CITED2, during the onset of differentiation, rescued the cardiogenic defects of Cited2-depleted ESC. In addition, we demonstrate that the proteins WNT5A and WNT11 held the potential for rescue. We also validated the zebrafish as a model to investigate cited2 function during development. Indeed, the microinjection of morpholinos targeting cited2 transcripts caused developmental defects recapitulating those of mice knockout models, including the increased propensity for cardiac defects and severe death rate. Importantly, the co-injection of anti-cited2 morpholinos with either CITED2 or WNT5A and WNT11 recombinant proteins corrected the developmental defects of Cited2-morphants. This study argues that defects caused by the dysfunction of Cited2 at early stages of development, including heart anomalies, may be remediable by supplementation of exogenous molecules, offering the opportunity to develop novel therapeutic strategies aiming to prevent CHD.
- Microdiet formulation with phospholipid modulate zebrafish skeletal development and reproductionPublication . Martins, Gil; Diogo, Patricia; Santos, Tamara; Cabrita, Elsa; Pinto, Wilson; Dias, Jorge; J. Gavaia, PauloDietary phospholipids' (PLs) content, origin, and profile are known to affect fish development and reproductive performance, but their effects in zebrafish (Danio rerio) nutrition are still poorly investigated. Therefore, this study aimed to assess the effect of practical microdiets containing plant-based and marine PL sources in zebrafish growth, survival, skeletal development, and reproductive performance. Reproductive performance was evaluated according to sperm motility, number of eggs, egg morphometry, hatching rate, and offspring standard length at 5 days postfertilization (dpf). For this purpose, seven microdiets were used, where two control diets were tested along with a supplementation with soybean lecithin (SL) as a plant-based PL source, and krill oil (KO) and copepod oil (CO) as marine PL sources, or in combinations (SLCO and SLKO). KO supplementation decreased larval growth performance and induced severe skeletal anomalies. SL supplementation reduced sperm total motility but improved offspring length at 5 dpf. CO supplementation increased sperm motility and the number of spawned eggs. Our results showed that a careful selection of the origin of dietary PL sources for microdiet formulation is critical to ensure adequate skeletal development and reproductive success. This study contributes to the improvement of zebrafish microdiet formulation and optimization of zebrafish husbandry practices.
- Reduction of skeletal anomalies in meagre (Argyrosomus regius, Asso, 1801) through early introduction of inert dietPublication . Martins, Gil; Ribeiro, Laura; Candeias-Mendes, Ana; Diogo, Patricia; Gamboa, Margarida; Barata, Marisa; Leonor Cancela, M.; Pousao-Ferreira, Pedro; J. Gavaia, PauloThe consolidation of meagre (Argyrosomus regius) in aquaculture requires an understanding and optimization of larval rearing and nutritional conditions. The aim of this study was to analyse the effects of an early introduction of inert diets during larval rearing, on growth performance, digestive enzymes activity and development of skeletal anomalies. This study evaluated the effects of three different timings for the introduction of inert diet during larval rearing: a control group (CTRL) where inert diet was initiated at 14 days after hatching (DAH) and two treatment groups that had an earlier introduction of inert diet at 8 DAH (T1) and 11 DAH (T2). Meagre larvae exhibited similar pancreatic and intestinal enzymatic activities among the different dietary treatments. No differences in the overall prevalence of anomalies were observed between treatments at 25 or 50 DAH, however, a significant reduction was observed in all groups with the transition from larval to juvenile stage. The precocious introduction of inert diet shifted the distribution of vertebral anomalies to a more anterior vertebral column region. Altogether, this study shows that earlier introduction of inert diets in meagre hatcheries can be beneficial for meagre production in aquaculture.
