Browsing by Author "Mathijssen, S. G. J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Determining carrier mobility with a metal–insulator–semiconductor structurePublication . Stallinga, Peter; Benvenho, A. R. V.; Smits, E. C. P.; Mathijssen, S. G. J.; Cölle, M.; Gomes, Henrique L.; De Leeuw, Dago M.The electron and hole mobility of nickel-bis(dithiolene) (NiDT) are determined in a metal– insulator–semiconductor (MIS)structure using admittance spectroscopy. The relaxation times found in the admittance spectra are attributed to the diffusion time of carriers to reach the insulator interface and via Einstein’s relation this yields the mobility values. In this way, an electron mobility of 1:9 104 cm2=Vs and a hole mobility of 3:9 106 cm2=Vs were found. It is argued that the low mobility is caused by an amphoteric mid-gap trap level. The activation energy for electrons and holes from these traps is found to be 0.46 eV and 0.40 eV, respectively.
- Dynamics of threshold voltage shifts in organic and amorphous silicon field-effect transistorsPublication . Mathijssen, S. G. J.; Colle, M.; Gomes, Henrique L.; Smits, E. C. P.; de Boer, B.; McCulloch, I.; Bobbert, P. A.; de Leeuw, D. M.The electrical instability of organic field-effect transistors is investigated. We observe that the threshold-voltage shift (see figure) shows a stretched-exponential time dependence under an applied gate bias. The activation energy of 0.6 eV is common for our and all other organic transistors reported so far. The constant activation energy supports charge trapping by residual water as the common origin.
