Browsing by Author "Nicastro, Katy R"
Now showing 1 - 10 of 16
Results Per Page
Sort Options
- Adaptive traits are maintained on steep selective gradients despite gene flow and hybridization in the intertidal zonePublication . I Zardi, Gerardo; Nicastro, Katy R; Cánovas, Fernando G.; Costa, J. F.; Serrao, Ester; Pearson, G. A.Gene flow among hybridizing species with incomplete reproductive barriers blurs species boundaries, while selection under heterogeneous local ecological conditions or along strong gradients may counteract this tendency. Congeneric, externallyfertilizing fucoid brown algae occur as distinct morphotypes along intertidal exposure gradients despite gene flow. Combining analyses of genetic and phenotypic traits, we investigate the potential for physiological resilience to emersion stressors to act as an isolating mechanism in the face of gene flow. Along vertical exposure gradients in the intertidal zone of Northern Portugal and Northwest France, the mid-low shore species Fucus vesiculosus, the upper shore species Fucus spiralis, and an intermediate distinctive morphotype of F. spiralis var. platycarpus were morphologically characterized. Two diagnostic microsatellite loci recovered 3 genetic clusters consistent with prior morphological assignment. Phylogenetic analysis based on single nucleotide polymorphisms in 14 protein coding regions unambiguously resolved 3 clades; sympatric F. vesiculosus, F. spiralis, and the allopatric (in southern Iberia) population of F. spiralis var. platycarpus. In contrast, the sympatric F. spiralis var. platycarpus (from Northern Portugal) was distributed across the 3 clades, strongly suggesting hybridization/introgression with both other entities. Common garden experiments showed that physiological resilience following exposure to desiccation/heat stress differed significantly between the 3 sympatric genetic taxa; consistent with their respective vertical distribution on steep environmental clines in exposure time. Phylogenetic analyses indicate that F. spiralis var. platycarpus is a distinct entity in allopatry, but that extensive gene flow occurs with both higher and lower shore species in sympatry. Experimental results suggest that strong selection on physiological traits across steep intertidal exposure gradients acts to maintain the 3 distinct genetic and morphological taxa within their preferred vertical distribution ranges. On the strength of distributional, genetic, physiological and morphological differences, we propose elevation of F. spiralis var. platycarpus from variety to species level, as F. guiryi.
- Broad scale agreement between intertidal habitats and adaptive traits on a basis of contrasting population genetic structurePublication . I Zardi, Gerardo; Nicastro, Katy R; Ferreira Costa, J.; Serrão, Ester; Pearson, G. A.Understanding the extent to which neutral processes and adaptive divergence shape the spatial structure of natural populations is a major goal in evolutionary biology and is especially important for the identification of significant levels of biodiversity. Our results identified replicated habitat-specific (adaptive) phenotypic divergence in the brown macroalga Fucus vesiculosus that is independent of population (neutral) genetic structure. F. vesiculosus inhabits contiguous and contrasting marine to estuarine intertidal habitats. Combining analyses of genetic and phenotypic traits of populations living under differential selective regimes (estuaries and open coast), we investigated levels of neutral genetic differentiation and adaptive physiological responses to emersion stress. In southwest England (SW UK) and northern Iberia (N. Iberia), populations living in estuaries and marine coastal habitats were genetically characterized at six microsatellite loci. In N. Iberia, two clades with limited admixture were recovered, each including one open coast site and the adjacent estuarine location. In contrast, SW UK samples clustered according to habitat and formed three distinct groups of genotypes; one including the two open coast locations and the other two representing each of the estuarine sites. Temperature loggers revealed distinct emersion regimes that characterized each habitat type independently of the region, while water and air temperature profiles showed site-specific trends. Despite acclimation under usual conditions, trait means of emersion stress resilience showed a strong phenotypic divergence between habitats, consistent with environmental clines in exposure time observed in the different habitats. We demonstrate that neutral genetic clusters do not reflect locally adapted population units. Our results identified replicated habitat-specific (adaptive) phenotypic divergence that is independent of population (neutral) genetic structure in F. vesiculosus. The significance of such findings extends beyond the theoretical evolutionary and ecological interest of discovering parallel adaptive responses to the broader implications for conservation of intraspecific biodiversity.
- Characterization of ten highly polymorphic microsatellite loci for the intertidal mussel Perna perna, and cross species amplification within the genusPublication . Coelho, Nelson; I Zardi, Gerardo; Pearson, G. A.; Serrão, Ester; Nicastro, Katy RThe brown mussel Perna perna (Linnaeus, 1758) is a dominant constituent of intertidal communities and a strong invader with multiple non-native populations distributed around the world. In a previous study, two polymorphic microsatellite loci were developed and used to determine population-level genetic diversity in invasive and native P. perna populations. However, higher number of microsatellite markers are required for reliable population genetic studies. In this context, in order to understand P. perna origins and history of invasion and to compare population genetic structure in native versus invaded areas, we developed 10 polymorphic microsatellite markers. Findings Described microsatellite markers were developed from an enriched genomic library. Analyses and characterization of loci using 20 individuals from a population in Western Sahara revealed on average 11 alleles per locus (range: 5–27) and mean gene diversity of 0.75 (range: 0.31 - 0.95). One primer pair revealed possible linkage disequilibrium while heterozygote deficiency was significant at four loci. Six of these markers cross-amplified in P. canaliculus (origin: New Zealand). Conclusions Developed markers will be useful in addressing a variety of questions concerning P. perna, including dispersal scales, genetic variation and population structure, in both native and invaded areas.
- Cheating the locals: invasive mussels steal and benefit from the cooling effect of indigenous musselsPublication . Lathlean, Justin A.; Seuront, Laurent; McQuaid, Christopher D.; Ng, Terence P. T.; Zardi, Gerardo I.; Nicastro, Katy RThe indigenous South African mussel Perna perna gapes during periods of aerial exposure to maintain aerobic respiration. This behaviour has no effect on the body temperatures of isolated individuals, but when surrounded by conspecifics, beneficial cooling effects of gaping emerge. It is uncertain, however, whether the presence of the invasive mussel Mytilus galloprovincialis limits the ability of P. perna for collective thermoregulation. We investigated whether varying densities of P. perna and M. galloprovincialis influences the thermal properties of both natural and artificial mussel beds during periods of emersion. Using infrared thermography, body temperatures of P. perna within mixed artificial beds were shown to increase faster and reach higher temperatures than individuals in conspecific beds, indicating that the presence of M. galloprovincialis limits the group cooling effects of gaping. In contrast, body temperatures of M. galloprovincialis within mixed artificial mussel beds increased slower and exhibited lower temperatures than for individuals in beds comprised entirely of M. galloprovincialis. Interestingly, differences in bed temperatures and heating rates were largely dependent on the size of mussels, with beds comprised of larger individuals experiencing less thermal stress irrespective of species composition. The small-scale patterns of thermal stress detected within manipulated beds were not observed within naturally occurring mixed mussel beds. We propose that small-scale differences in topography, size-structure, mussel bed size and the presence of organisms encrusting the mussel shells mask the effects of gaping behaviour within natural mussel beds. Nevertheless, the results from our manipulative experiment indicate that the invasive species M. galloprovincialis steals thermal properties as well as resources from the indigenous mussel P. perna. This may have significant implications for predicting how the co-existence of these two species may change as global temperatures continue to rise.
- Comparison of phototrophic shell-degrading endoliths in invasive and native populations of the intertidal mussel Mytilus galloprovincialisPublication . Marquet, Nathalie; Nicastro, Katy R; Gektidis, M.; McQuaid, C. D.; Pearson, G. A.; Serrão, Ester; I Zardi, GerardoThe intertidal mussel Mytilus galloprovincialis is a successful invader worldwide. Since its accidental introduction onto the South African west coast in the late 1970s, it has become the most successful marine invasive species in South Africa. One possible explanation for this phenomenon is that M. galloprovincialis suffers less from phototrophic shell-degrading endoliths in its invasive than in its native range. We assessed photoautotrophic endolithic pressure on M. galloprovincialis in native (Portugal) and invasive (South Africa) ranges. Invasive populations were more heavily infested than native populations. In Portugal, only the biggest/oldest mussels displayed endolithic erosion of the shell and the incidence of infestation was greater at higher shore levels where more prolonged exposure to light enhances endolith photosynthesis. In South Africa, even the smallest size classes of mussels were heavily infested throughout the shore. In Portugal, endolithicinduced mortality was observed at only one location, while in South Africa it occurred at all locations and at significantly higher rates than in Portugal. Important sub-lethal effects were detected in infested native mussels, confirming previous studies of invasive populations and suggesting an energy trade-off between shell repair and other physiological constraints. We observed a positive relationship between infestation rates and barnacle colonization on mussel shells, suggesting possible facilitation of barnacle settlement/survival by shell-boring pathogens. Identification of endoliths revealed common species between regions. However, two species were unique in the invasive range while another was unique in the native region. Different levels of endolithic infestation in the invasive and the native range were not explained by the effect of major environmental determinants (Photosynthetically Available Radiation and wave height). The results reject our initial hypothesis, indicating that invasion success of M. galloprovincialis is not simply explained by escape from its natural enemies but results from complex interactions between characteristics of the invaded community and properties of the invader.
- Enemies with benefits: parasitic endoliths protect mussels against heat stressPublication . Zardi, Gerardo I.; Nicastro, Katy R; McQuaid, C. D.; Ng, T. P. T.; Lathlean, J.; Seuront, L.Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than nonparasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation.
- First record of the brown mussel (Perna perna) from the European Atlantic coastPublication . Lourenço, Carla R.; Nicastro, Katy R; Serrão, Ester; I Zardi, GerardoThe occurrence of the brown mussel Perna perna is reported for the first time from the European Atlantic coast, on the southern Portuguese coast. Several specimens of this mytilidae species were identified in exposed rocky intertidal habitats in Vilamoura (37804019.7000N 8807019.7100W) and Ilha do Farol (36858029.3800N 7851042.5100W). It is suggested that, under warming climate conditions, this subtropical/tropical species might have extended its geographical distribution from North Africa.
- Intraspecific genetic lineages of a marine mussel show behavioural divergence and spatial segregation over a tropical/subtropical biogeographic transitionPublication . Zardi, Gerardo I.; Nicastro, Katy R; McQuaid, C. D.; Castilho, Rita; Costa, Joana; Serrão, Ester; Pearson, G. A.Background: Intraspecific variability is seen as a central component of biodiversity. We investigated genetic differentiation, contemporary patterns of demographic connectivity and intraspecific variation of adaptive behavioural traits in two lineages of an intertidal mussel (Perna perna) across a tropical/subtropical biogeographic transition. Results: Microsatellite analyses revealed clear genetic differentiation between western (temperate) and eastern (subtropical/tropical) populations, confirming divergence previously detected with mitochondrial (COI) and nuclear (ITS) markers. Gene flow between regions was predominantly east-to-west and was only moderate, with higher heterozygote deficiency where the two lineages co-occur. This can be explained by differential selection and/or oceanographic dynamics acting as a barrier to larval dispersal. Common garden experiments showed that gaping (periodic closure and opening of the shell) and attachment to the substratum differed significantly between the two lineages. Western individuals gaped more and attached less strongly to the substratum than eastern ones. Conclusions: These behavioural differences are consistent with the geographic and intertidal distributions of each lineage along sharp environmental clines, indicating their strong adaptive significance. We highlight the functional role of diversity below the species level in evolutionary trends and the need to understand this when predicting biodiversity responses to environmental change.
- Intraspecific genetic lineages of a marine mussel show behavioural divergence when exposed to microplastic leachatesPublication . Cozzolino, Lorenzo; Nicastro, Katy R; Hubbard, Peter; Seuront, Laurent; McQuaid, Christopher D.; Zardi, Gerardo IWorldwide, microplastic pollution has numerous negative implications for marine biota, exacerbating the effects of other forms of global anthropogenic disturbance. Mounting evidence shows that microplastics (MPs) not only cause physical damage through their ingestion, but also act as vectors for hazardous compounds by leaching absorbed and adsorbed chemicals. Research on the effects of plastic pollution has, however, largely assumed that species respond uniformly, while ignoring intraspecific diversity (i.e., variation within a single species). We investigated the effects of plastic leachates derived from factory-fresh (virgin) and beached microplastics on the behavioural responses of two genetic lineages of the Mediterranean mussel Mytilus galloprovincialis. Through laboratory behavioural experiments, we found that during exposure to leachates from beached microplastics (beached MPLs), Atlantic specimens moved significantly less than Mediterranean individuals in terms of both (i) proportion of individuals responding through movement and (ii) net and gross distances crawled. In contrast, no significant intraspecific differences were observed in the behaviour of either adults or recruits when exposed to MPLs from virgin microplastics (virgin MPLs). Additionally, the reception of cues from three amino acids (Lcysteine, proline and L-leucine) at increasing concentrations (10-5 M to 10-3 M in charcoal-filtered seawater) was tested by electrophysiological analysis using mussels exposed to beached MPLs or control seawater. We found significant intraspecific differences in response to 10-3 M L-cysteine (regardless of treatment) and 10-4 M L-cysteine (in mussels exposed to beached MPLs) and to 10-3 M proline (in mussels exposed to beached MPLs) and 10-5 M L-leucine. Our study suggests that intraspecific variation in a marine mussel may prompt different responses to plastic pollution, potentially triggered by local adaptation and physiological variability between lineages. Our work highlights the importance of assessing the effects of intraspecific variation, especially in environmental sentinel species as this level of diversity could modulate responses to plastic pollution.
- Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensorsPublication . Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K. A. S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D. G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O'Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J. A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Pena Mejia, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristin J.; Nicastro, Katy R; Zardi, GerardoAt a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of similar to 2.0-2.5 degrees C, during daily fluctuations that often exceeded 15 degrees-20 degrees C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on 'habitat-level' measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially-and temporally-explicit field observations of body temperature.