Browsing by Author "Orth, Robert J."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Global analysis of seagrass restoration: the importance of large-scale plantingPublication . van Katwijk, Marieke M.; Thorhaug, Anitra; Marba, Nuria; Orth, Robert J.; Duarte, Carlos M.; Kendrick, Gary A.; Althuizen, Inge H. J.; Balestri, Elena; Bernard, Guillaume; Cambridge, Marion L.; Cunha, Alexandra; Durance, Cynthia; Giesen, Wim; Han, Qiuying; Hosokawa, Shinya; Kiswara, Wawan; Komatsu, Teruhisa; Lardicci, Claudio; Lee, Kun-Seop; Meinesz, Alexandre; Nakaoka, Masahiro; O'Brien, Katherine R.; Paling, Erik I.; Pickerell, Chris; Ransijn, Aryan M. A.; Verduin, Jennifer J.In coastal and estuarine systems, foundation species like seagrasses, mangroves, saltmarshes or corals provide important ecosystem services. Seagrasses are globally declining and their reintroduction has been shown to restore ecosystem functions. However, seagrass restoration is often challenging, given the dynamic and stressful environment that seagrasses often grow in. From our world-wide meta-analysis of seagrass restoration trials (1786 trials), we describe general features and best practice for seagrass restoration. We confirm that removal of threats is important prior to replanting. Reduced water quality (mainly eutrophication), and construction activities led to poorer restoration success than, for instance, dredging, local direct impact and natural causes. Proximity to and recovery of donor beds were positively correlated with trial performance. Planting techniques can influence restoration success. The meta-analysis shows that both trial survival and seagrass population growth rate in trials that survived are positively affected by the number of plants or seeds initially transplanted. This relationship between restoration scale and restoration success was not related to trial characteristics of the initial restoration. The majority of the seagrass restoration trials have been very small, which may explain the low overall trial survival rate (i.e. estimated 37%). Successful regrowth of the foundation seagrass species appears to require crossing a minimum threshold of reintroduced individuals. Our study provides the first global field evidence for the requirement of a critical mass for recovery, which may also hold for other foundation species showing strong positive feedback to a dynamic environment.Synthesis and applications. For effective restoration of seagrass foundation species in its typically dynamic, stressful environment, introduction of large numbers is seen to be beneficial and probably serves two purposes. First, a large-scale planting increases trial survival - large numbers ensure the spread of risks, which is needed to overcome high natural variability. Secondly, a large-scale trial increases population growth rate by enhancing self-sustaining feedback, which is generally found in foundation species in stressful environments such as seagrass beds. Thus, by careful site selection and applying appropriate techniques, spreading of risks and enhancing self-sustaining feedback in concert increase success of seagrass restoration.For effective restoration of seagrass foundation species in its typically dynamic, stressful environment, introduction of large numbers is seen to be beneficial and probably serves two purposes. First, a large-scale planting increases trial survival - large numbers ensure the spread of risks, which is needed to overcome high natural variability. Secondly, a large-scale trial increases population growth rate by enhancing self-sustaining feedback, which is generally found in foundation species in stressful environments such as seagrass beds. Thus, by careful site selection and applying appropriate techniques, spreading of risks and enhancing self-sustaining feedback in concert increase success of seagrass restoration.
- Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern HemispherePublication . Reynolds, Pamela L.; Stachowicz, John J.; Hovel, Kevin; Bostrom, Christoffer; Boyer, Katharyn; Cusson, Mathieu; Eklof, Johan S.; Engel, Friederike G.; Engelen, Aschwin H.; Eriksson, Britas Klemens; Fodrie, F. Joel; Griffin, John N.; Hereu, Clara M.; Hori, Masakazu; Hanley, Torrance; Ivanov, Mikhail; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; McGlathery, Karen; Moksnes, Per-Olav; Nakaoka, Masahiro; O'Connor, Mary I.; O'Connor, Nessa E.; Orth, Robert J.; Rossi, Francesca; Ruesink, Jennifer; Sotka, Erik E.; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard K. F.; Whalen, Matthew A.; Duffy, J. EmmettLatitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 37 degrees of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas insitu water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simply increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in predation intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions.
- A Pleistocene legacy structures variation in modern seagrass ecosystemsPublication . Duffy, J. Emmett; Stachowicz, John J.; Reynolds, Pamela L.; Hovel, Kevin A.; Jahnke, Marlene; Sotka, Erik E.; Boström, Christoffer; Boyer, Katharyn E.; Cusson, Mathieu; Eklöf, Johan; Engelen, Aschwin; Eriksson, Britas Klemens; Fodrie, F. Joel; Griffin, John N.; Hereu, Clara M.; Hori, Masakazu; Hughes, A. Randall; Ivanov, Mikhail V.; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; Lefcheck, Jonathan S.; Moksnes, Per-Olav; Nakaoka, Masahiro; O’Connor, Mary I.; O’Connor, Nessa E.; Orth, Robert J.; Peterson, Bradley J.; Reiss, Henning; Reiss, Katrin; Richardson, J. Paul; Rossi, Francesca; Ruesink, Jennifer L.; Schultz, Stewart T.; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard; Voigt, Erin; Whalen, Matthew A.; Ziegler, Shelby L.; Olsen, Jeanine L.Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.
- The biogeography of community assembly: latitude and predation drive variation in community trait distribution in a guild of epifaunal crustaceansPublication . Gross, Collin P.; Duffy, J. Emmett; Hovel, Kevin A.; Kardish, Melissa R.; Reynolds, Pamela L.; Boström, Christoffer; Boyer, Katharyn E.; Cusson, Mathieu; Eklöf, Johan; Engelen, Aschwin; Eriksson, Britas Klemens; Fodrie, F. Joel; Griffin, John N.; Hereu, Clara M.; Hori, Masakazu; Hughes, A. Randall; Ivanov, Mikhail V.; Jorgensen, Pablo; Kruschel, Claudia; Lee, Kun-Seop; Lefcheck, Jonathan; McGlathery, Karen; Moksnes, Per-Olav; Nakaoka, Masahiro; O'Connor, Mary I.; O'Connor, Nessa E.; Olsen, Jeanine L.; Orth, Robert J.; Peterson, Bradley J.; Reiss, Henning; Rossi, Francesca; Ruesink, Jennifer; Sotka, Erik E.; Thormar, Jonas; Tomas, Fiona; Unsworth, Richard; Voigt, Erin P.; Whalen, Matthew A.; Ziegler, Shelby L.; Stachowicz, John J.While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass (Zostera marina) spanning 30 degrees of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.
- Toward a coordinated global observing system for seagrasses and marine macroalgaePublication . Duffy, J. Emmett; Benedetti-Cecchi, Lisandro; Trinanes, Joaquin; Muller-Karger, Frank E.; Ambo-Rappe, Rohani; Boström, Christoffer; Buschmann, Alejandro H.; Byrnes, Jarrett; Coles, Robert G.; Creed, Joel; Cullen-Unsworth, Leanne C.; Diaz-Pulido, Guillermo; Duarte, Carlos M.; Edgar, Graham J.; Fortes, Miguel; Goni, Gustavo; Hu, Chuanmin; Huang, Xiaoping; Hurd, Catriona L.; Johnson, Craig; Konar, Brenda; Krause-Jensen, Dorte; Krumhansl, Kira; Macreadie, Peter; Marsh, Helene; McKenzie, Len J.; Mieszkowska, Nova; Miloslavich, Patricia; Montes, Enrique; Nakaoka, Masahiro; Norderhaug, Kjell Magnus; Norlund, Lina M.; Orth, Robert J.; Prathep, Anchana; Putman, Nathan F.; Samper-Villarreal, Jimena; Serrao, Ester; Short, Frederick; Pinto, Isabel Sousa; Steinberg, Peter; Stuart-Smith, Rick; Unsworth, Richard K. F.; van Keulen, Mike; van Tussenbroek, Brigitta I.; Wang, Mengqiu; Waycott, Michelle; Weatherdon, Lauren V.; Wernberg, Thomas; Yaakub, Siti MaryamIn coastal waters around the world, the dominant primary producers are benthic macrophytes, including seagrasses and macroalgae, that provide habitat structure and food for diverse and abundant biological communities and drive ecosystem processes. Seagrass meadows and macroalgal forests play key roles for coastal societies, contributing to fishery yields, storm protection, biogeochemical cycling and storage, and important cultural values. These socio-economically valuable services are threatened worldwide by human activities, with substantial areas of seagrass and macroalgal forests lost over the last half-century. Tracking the status and trends in marine macrophyte cover and quality is an emerging priority for ocean and coastal management, but doing so has been challenged by limited coordination across the numerous efforts to monitor macrophytes, which vary widely in goals, methodologies, scales, capacity, governance approaches, and data availability. Here, we present a consensus assessment and recommendations on the current state of and opportunities for advancing global marine macrophyte observations, integrating contributions from a community of researchers with broad geographic and disciplinary expertise. With the increasing scale of human impacts, the time is ripe to harmonize marine macrophyte observations by building on existing networks and identifying a core set of common metrics and approaches in sampling design, field measurements, governance, capacity building, and data management. We recommend a tiered observation system, with improvement of remote sensing and remote underwater imaging to expand capacity to capture broad-scale extent at intervals of several years, coordinated with strati fied in situ sampling annually to characterize the key variables of cover and taxonomic or functional group composition, and to provide ground-truth. A robust networked system of macrophyte observations will be facilitated by establishing best practices, including standard protocols, documentation, and sharing of resources at all stages of work flow, and secure archiving of open-access data. Because such a network is necessarily distributed, sustaining it depends on close engagement of local stakeholders and focusing on building and long-term maintenance of local capacity, particularly in the developing world. Realizing these recommendations will producemore effective, efficient, and responsive observing, a more accurate global picture of change in vegetated coastal systems, and stronger international capacity for sustaining observations.