Browsing by Author "Regalla, Aissa"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- eDNA metabarcoding for diet analyses of green sea turtles (Chelonia mydas)Publication . Díaz-Abad, Lucía; Bacco-Mannina, Natassia; Madeira, Fernando Miguel; Neiva, J.; Aires, Tania; Serrao, Ester; Regalla, Aissa; Patrício, Ana R.; Rodrigues Frade, PedroUnderstanding sea turtle diets can help conservation planning, but their trophic ecology is complex due to life history characteristics such as ontogenetic shifts and large foraging ranges. Studying sea turtle diet is challenging, particularly where ecological foraging observations are not possible. Here, we test a new minimally invasive method for the identifcation of diet items in sea turtles. We fngerprinted diet content using DNA from esophageal and cloacal swab samples by metabarcoding the 18S rRNA gene. This approach was tested on samples collected from green turtles (Chelonia mydas) from a juvenile foraging aggregation in the Bijagós archipelago in Guinea-Bissau. Esophagus samples (n=6) exhibited a higher dietary richness (11±5 amplicon sequence variants (ASVs) per sample; average±SD) than cloacal ones (n=5; 8±2 ASVs). Overall, the diet was dominated by red macroalgae (Rhodophyta; 48.2±16.3% of all ASVs), with the main food item in the esophagus and cloaca being a red alga belonging to the Rhodymeniophycidae subclass (35.1±27.2%), followed by diatoms (Bacillariophyceae; 7.5±7.3%), which were presumably consumed incidentally. Seagrass and some invertebrates were also present. Feeding on red algae was corroborated by feld observations and barcoding of food items available in the benthic habitat, validating the approach for identifying diet content. We conclude that identifcation of food items using metabarcoding of esophageal swabs is useful for a better understanding of the relationships between the feeding behavior of sea turtles and their environment.
- Fine-scale foraging segregation in a green turtle (Chelonia mydas) feeding ground in the Bijagós archipelago, Guinea BissauPublication . Madeira, Fernando Miguel; Rebelo, Rui; Catry, Paulo; Neiva, J.; Barbosa, Castro; Regalla, Aissa; Patrício, Ana RitaGreen turtles (Chelonia mydas) are highly dependent on neritic foraging areas throughout much of their life. Still, knowledge of recruitment dynamics, foraging habits, and habitat use in these areas is limited. Here, we evaluated how the distribution and food preferences of green sea turtles from different life stages varied within a foraging aggregation. We focused on two islands in Guinea-Bissau, Unhocomo and Unhocomozinho, using water captures and survey dives to record habitat use and characteristics, and stable isotopes to infer diet. Additionally, we used stable isotopes to infer their diet. Two habitat types were sampled: deeper (2.26 +/- 0.4 m) rocky sites fringed by mangrove with macroalgae, and sandy shallows (1.37 +/- 0.12 m) surrounded by rocky reefs with macroalgae and seagrass. The two benthic communities were similar isotopically and in terms of species composition, except for the presence or absence of seagrass, which had unique signatures. We captured 89 turtles ranging from 35 cm to 97 cm in curved carapace length (i.e., juvenile to adult stages). Size distribution was habitat-dependent, with most smaller turtles present in sandy shallows and larger turtles favoring slightly deeper rocky sites. Turtle isotopic signatures differed between the habitat of capture, regardless of size, revealing a marked dichotomy in foraging preference. All turtles fed primarily on macroalgae, mostly rhodophytes. However, individuals captured in sandy habitats had evident seagrass skewed isotopic signatures. Larger turtles may be unable to use the more diverse shallower foraging sites due to increased vulnerability to predation. Despite the proximity of the sampled foraging sites (2.7 km apart), the two foraging subgroups seem to maintain consistently different feeding habits. Our study highlights how heterogeneous green turtle foraging habits can be within populations, even at small geographic scale
- Long range gene flow beyond predictions from oceanographic transport in a tropical marine foundation speciesPublication . Tavares, Ana I; Assis, Jorge; Larkin, Patrick D.; Creed, Joel C.; Magalhães, Karine; Horta, Paulo; Engelen, Aschwin; Cardoso, Noelo; Barbosa, Castro; Pontes, Samuel; Regalla, Aissa; Almada, Carmen; Ferreira, Rogério; Abdoul, Ba Mamadou; Ebaye, Sidina; Bourweiss, Mohammed; dos Santos, Carmen Van-Dúnem; Patrício, Ana R.; Teodosio, Maria; Santos, Rui; Pearson, Gareth; Serrao, Ester AThe transport of passively dispersed organisms across tropical margins remains poorly understood. Hypotheses of oceanographic transportation potential lack testing with large scale empirical data. To address this gap, we used the seagrass species, Halodule wrightii, which is unique in spanning the entire tropical Atlantic. We tested the hypothesis that genetic differentiation estimated across its large-scale biogeographic range can be predicted by simulated oceanographic transport. The alternative hypothesis posits that dispersal is independent of ocean currents, such as transport by grazers. We compared empirical genetic estimates and modelled predictions of dispersal along the distribution of H. wrightii. We genotyped eight microsatellite loci on 19 populations distributed across Atlantic Africa, Gulf of Mexico, Caribbean, Brazil and developed a biophysical model with high-resolution ocean currents. Genetic data revealed low gene flow and highest differentiation between (1) the Gulf of Mexico and two other regions: (2) Caribbean-Brazil and (3) Atlantic Africa. These two were more genetically similar despite separation by an ocean. The biophysical model indicated low or no probability of passive dispersal among populations and did not match the empirical genetic data. The results support the alternative hypothesis of a role for active dispersal vectors like grazers.
- Potential biodiversity connectivity in the network of marine protected areas in Western AfricaPublication . Assis, Jorge; Failler, Pierre; Fragkopoulou, Eliza; Abecasis, David; Touron-Gardic, Gregoire; Regalla, Aissa; Sidina, Ebaye; Dinis, Herculano; Serrao, EsterMarine Protected Areas (MPAs) must function as networks with sufficient stepping-stone continuity between suitable habitats to ensure the conservation of naturally connected regional pools of biodiversity in the long-term. For most marine biodiversity, population connectivity is mediated by passively dispersed planktonic stages with contrasting dispersal periods, ranging from a few hours to hundreds of days. These processes exert a major influence on whether threatened populations should be conserved as either isolated units or linked metapopulations. However, the distance scales at which individual MPAs are connected are insufficiently understood. Here, we use a biophysical model integrating high-resolution ocean currents and contrasting dispersal periods to predict connectivity across the Network of MPAs in Western Africa. Our results revealed that connectivity differs sharply among distinct ecological groups, from highly connected (e.g., fish and crustacea) to predominantly isolated ecosystem structuring species (e.g., corals, macroalgae and seagrass) that might potentially undermine conservation efforts because they are the feeding or nursery habitats required by many other species. Regardless of their dispersal duration, all ecological groups showed a common connectivity gap in the Bijagós region of Guinea-Bissau, highlighting the important role of MPAs there and the need to further support and increase MPA coverage to ensure connectivity along the whole network. Our findings provide key insights for the future management of the Network of MPAs in Western Africa, highlighting the need to protect and ensure continuity of isolated ecosystem structuring species and identifying key regions that function as stepping-stone connectivity corridors.
- Red, gold and green: microbial contribution of Rhodophyta and other Algae to Green Turtle (Chelonia mydas) Gut MicrobiomePublication . Díaz-Abad, Lucía; Bacco-Mannina, Natassia; Miguel Madeira, Fernando; Serrao, Ester; Regalla, Aissa; Patrício, Ana R.; Rodrigues Frade, PedroThe fitness of the endangered green sea turtle (Chelonia mydas) may be strongly affected by its gut microbiome, as microbes play important roles in host nutrition and health. This study aimed at establishing environmental microbial baselines that can be used to assess turtle health under altered future conditions. We characterized the microbiome associated with the gastrointestinal tract of green turtles from Guinea Bissau in different life stages and associated with their food items, using 16S rRNA metabarcoding. We found that the most abundant (% relative abundance) bacterial phyla across the gastrointestinal sections were Proteobacteria (68.1 ± 13.9% “amplicon sequence variants”, ASVs), Bacteroidetes (15.1 ± 10.1%) and Firmicutes (14.7 ± 21.7%). Additionally, we found the presence of two red algae bacterial indicator ASVs (the Alphaproteobacteria Brucella pinnipedialis with 75 ± 0% and a Gammaproteobacteria identified as methanotrophic endosymbiont of Bathymodiolus, with <1%) in cloacal compartments, along with six bacterial ASVs shared only between cloacal and local environmental red algae samples. We corroborate previous results demonstrating that green turtles fed on red algae (but, to a lower extent, also seagrass and brown algae), thus, acquiring microbial components that potentially aid them digest these food items. This study is a foundation for better understanding the microbial composition of sea turtle digestive tracts.
- Seagrass connectivity on the West Coast of Africa supports the Hypothesis of Grazer-Mediated Seed DispersalPublication . Tavares, Ana I; Assis, Jorge; Patrício, A. R.; Ferreira, Rogério; Cheikh, Mohamed Ahmed Sidi; Bandeira, Salomão; Regalla, Aissa; Santos, Iderlindo; Potouroglou, Maria; Nicolau, Suzana; Teodosio, Maria; Almada, Carmen; Santos, Rui; Pearson, Gareth; Serrao, EsterPopulation connectivity influences the distribution of genetic diversity and divergence along a species range, as the likelihood of extinction or differentiation increases in isolated populations. However, there is still poor understanding of the processes mediating inter-population dispersal in marine species that are sessile and lack planktonic life stages. One such case is the seagrass species Halodule wrightii, which produces basal seeds, although detached plants can drift. Along the tropical western coast of Africa, this species occurs in distant discontinuous habitats, raising the question of how interpopulation dispersal is mediated. The species is a key source of ecosystem functions including feeding large migratory grazers. This study aims to infer whether genetic differentiation of the seagrass H. wrightii along the western coast of Africa supports a hypothesis of predominant transportation of rafting seagrass by ocean currents, versus the hypothesis of biotic vectors of dispersal. Additional hypotheses were addressed concerning range-wide clonality and genetic diversity, assessed with microsatellite markers on populations of the west coast of Africa from Mauritania to Angola. Population genetic diversity and structure were compared with predictions from biophysical models of dispersal by oceanographic currents. The genetic data revealed low divergence among most populations, in strong contrast with predictions of very low probability of connectivity mediated by currents along the western African coastline. Moderate to high genotypic diversity showed important seed recruitment, but genetic and genotypic diversities were lower at range edges. Populations north and south of the equator were differentiated, and remarkably, so were neighboring equatorial populations despite their proximity. These results reveal independent sources of colonization of meadows in these islands, which are major habitat for migratory grazing green turtles, also supporting the hypothesis of biotically mediated seed transport. The importance of seagrass for conservation of endangered macrofauna has been widely reported; here we report evidence supporting the reciprocal role, that macrofauna protection can also plays a role in long-term survival and reproductive success of seagrass.