Browsing by Author "Reinhardt, Richard"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
- An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressorsPublication . Pearson, G. A.; Hoarau, G.; Lago-Lestón, Asunción; Coyer, J. A.; Kube, M.; Reinhardt, Richard; Henckel, K.; Serrão, Ester; Corre, E.; Olsen, J. L.In order to aid gene discovery and uncover genes responding to abiotic stressors in stress-tolerant brown algae of the genus Fucus, expressed sequence tags (ESTs) were studied in two species, Fucus serratus and Fucus vesiculosus. Clustering of over 12,000 ESTs from three libraries for heat shock/recovery and desiccation/rehydration resulted in identification of 2,503, 1,290, and 2,409 unigenes from heat-shocked F. serratus, desiccated F. serratus, and desiccated F. vesiculosus, respectively. Low overall annotation rates (18–31%) were strongly associated with the presence of long 3′ untranslated regions in Fucus transcripts, as shown by analyses of predicted protein-coding sequence in annotated and nonannotated tentative consensus sequences. Posttranslational modification genes were overrepresented in the heat shock/recovery library, including many chaperones, the most abundant of which were a family of small heat shock protein transcripts, Hsp90 and Hsp70 members. Transcripts of LI818-like light-harvesting genes implicated in photoprotection were also expressed during heat shock in high light. The expression of several heat-shock-responsive genes was confirmed by quantitative reverse transcription polymerase chain reaction. However, candidate genes were notably absent from both desiccation/rehydration libraries, while the responses of the two species to desiccation were divergent, perhaps reflecting the species-specific physiological differences in stress tolerance previously established. Desiccation-tolerant F. vesiculosus overexpressed at least 17 ribosomal protein genes and two ubiquitinribosomal protein fusion genes, suggesting that ribosome function and/or biogenesis are important during cycles of rapid desiccation and rehydration in the intertidal zone and possibly indicate parallels with other poikilohydric organisms such as desiccation-tolerant bryophytes.
- Analysis of the goldfish Carassius auratus olfactory epithelium transcriptome reveals the presence of numerous non-olfactory GPCR and putative receptors for progestin pheromonesPublication . Kolmakov, Nikolai N.; Kube, M.; Reinhardt, Richard; Canario, Adelino V. M.The goldfish (Carassius auratus) uses steroids and prostaglandins as pheromone cues at different stages of the reproductive cycle to facilitate spawning synchronization. Steroid progestin pheromone binding has been detected in goldfish olfactory membranes but the receptors responsible for this specific binding remain unknown. In order to shed some light on the olfactory epithelium transcriptome and search for possible receptor candidates a large set of EST from this tissue were analysed and compared to and combined with a similar zebrafish (Danio rerio) resource.
- Characterization and refinement of growth related quantitative trait loci in European sea bass (Dicentrarchus labrax) using a comparative approachPublication . Louro, Bruno; Kuhl, Heiner; Tine, Mbaye; de Koning, Dirk-Jan; Batargias, Costas; Volckaert, Filip A. M.; Reinhardt, Richard; Canario, Adelino; Power, DeborahThe identification of genetic markers for traits of interest for aquaculture, such as growth, is an important step for the establishment of breeding programmes. As more genomic information becomes available the possibility of applying comparative genomics to identify and refine quantitative trait locus (QTLs) and potentially identify candidate genes responsible for the QTL effect may accelerate genetic improvement in established and new aquaculture species. Here we report such an approach on growth related traits in the European sea bass (Dicentrarchus labrax), an important species for European aquaculture. A genetic map was generated with markers targeted to previously identified QTL for growth which reduced distance and improved resolution in these regions. A total of 36 significant QTLs were identified when morphometric traits were considered individually in maternal half sibs, paternal half sibs and sib-pair analysis. Twenty seven new markers targeted to the growth QTLs, obtained by comparative mapping, reduced the average distance between markers from 23.4, 9.1, and 5.8 cM in the previous map to 3.4, 2.2, and 5.2 cM, on linkage group (LG) LG4, LG6 and LG15 respectively. Lists of genes embedded in the QTL - 591 genes in LG4, 234 genes in LG6 and 450 genes in LG15 - were obtained from the European sea bass genome. Comparative mapping revealed conserved gene synteny across teleost fishes. Functional protein association network analysis with the gene products of the 3 linkage groups revealed a large global association network including 42 gene products. Strikingly the association network was populated with genes of known biological importance for growth and body weight in terrestrial farm animals, such as elements of the signaling pathways for Jak-STAT, MAPK, adipocytokine and insulin, growth hormone, IGFI and II. This study demonstrates the feasibility of a comparative genomics combined with functional gene annotation to refine the resolution of QTL and the establishment of hypothesis to accelerate discovery of putative responsible genes.Statement of relevance: This study demonstrates the feasibility of a comparative genomics approach, combined with functional annotation to refine the resolution of QTL and establishment of hypothesis to accelerate discovery of candidate genes. As production of genomic data is becoming more accessible, the implementation of this strategy will rapidly and efficiently provide the tools required for genetic selection in new candidate aquaculture species. (C) 2016 Elsevier B.V. All rights reserved.
- Comparative analysis of a teleost skeleton transcriptome provides insight into its regulationPublication . Vieira, Florbela A.; Thorne, Michael A. S.; Stueber, K.; Darias, M.; Reinhardt, Richard; Clark, M. S.; Gisbert, Enric; Power, DeborahAn articulated endoskeleton that is calcified is a unifying innovation of the vertebrates, however the molecular basis of the structural divergence between terrestrial and aquatic vertebrates, such as teleost fish, has not been determined. In the present study long-read next generation sequencing (NGS, Roche 454 platform) was used to characterize acellular perichondral bone (vertebrae) and chondroid bone (gill arch) in the gilthead sea bream (Sparus auratus). A total of 15.97 and 14.53 Mb were produced, respectively from vertebrae and gill arch cDNA libraries and yielded 32,374 and 28,371 contigs (consensus sequences) respectively. 10,455 contigs from vertebrae and 10,625 contigs from gill arches were annotated with gene ontology terms. Comparative analysis of the global transcriptome revealed 4249 unique transcripts in vertebrae, 4201 unique transcripts in the gill arches and 3700 common transcripts. Several core gene networks were conserved between the gilthead sea bream and mammalian skeleton. Transcripts for putative endocrine factors were identified in acellular gilthead sea bream bone suggesting that in common with mammalian bone it can act as an endocrine tissue. The acellular bone of the vertebra, in contrast to current opinion based on histological analysis, was responsive to a short fast and significant (p < 0.05) down-regulation of several transcripts identified by NGS, osteonectin, osteocalcin, cathepsin K and IGFI occurred. In gill arches fasting caused a significant (p < 0.05) down-regulation of osteocalcin and up-regulation of MMP9.
- Development and validation of a gene expression oligo microarray for the gilthead sea bream (Sparus aurata)Publication . Ferraresso, Serena; Vitulo, Nicola; Mininni, Alba N.; Romualdi, Chiara; Cardazzo, Barbara; Negrisolo, Enrico; Reinhardt, Richard; Canario, Adelino V. M.; Patarnello, T.; Bargelloni, LucaAquaculture represents the most sustainable alternative of seafood supply to substitute for the declining marine fisheries, but severe production bottlenecks remain to be solved. The application of genomic technologies offers much promise to rapidly increase our knowledge on biological processes in farmed species and overcome such bottlenecks. Here we present an integrated platform for mRNA expression profiling in the gilthead sea bream (Sparus aurata), a marine teleost of great importance for aquaculture.
- Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformityPublication . Ferraresso, Serena; Milan, Massimo; Pellizzari, Caterina; Vitulo, Nicola; Reinhardt, Richard; Canario, Adelino V. M.; Patarnello, T.; Bargelloni, LucaAbstract Background The European sea bass (Dicentrarchus labrax) is a marine fish of great importance for fisheries and aquaculture. Functional genomics offers the possibility to discover the molecular mechanisms underlying productive traits in farmed fish, and a step towards the application of marker assisted selection methods in this species. To this end, we report here on the development of an oligo DNA microarray for D. labrax. Results A database consisting of 19,048 unique transcripts was constructed, of which 12,008 (63%) could be annotated by similarity and 4,692 received a GO functional annotation. Two non-overlapping 60mer probes were designed for each unique transcript and in-situ synthesized on glass slides using Agilent SurePrint™ technology. Probe design was positively completed for 19,035 target clusters; the oligo microarray was then applied to profile gene expression in mandibles and whole-heads of fish affected by prognathism, a skeletal malformation that strongly affects sea bass production. Statistical analysis identified 242 transcripts that are significantly down-regulated in deformed individuals compared to normal fish, with a significant enrichment in genes related to nervous system development and functioning. A set of genes spanning a wide dynamic range in gene expression level were selected for quantitative RT-PCR validation. Fold change correlation between microarray and qPCR data was always significant. Conclusions The microarray platform developed for the European sea bass has a high level of flexibility, reliability, and reproducibility. Despite the well known limitations in achieving a proper functional annotation in non-model species, sufficient information was obtained to identify biological processes that are significantly enriched among differentially expressed genes. New insights were obtained on putative mechanisms involved on mandibular prognathism, suggesting that bone/nervous system development might play a role in this phenomenon.
- European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciationPublication . Tine, Mbaye; Kuhl, Heiner; Gagnaire, Pierre-Alexandre; Louro, Bruno; Desmarais, Erick; Martins, Rute S. T.; Hecht, Jochen; Knaust, Florian; Belkhir, Khalid; Klages, Sven; Dieterich, Roland; Stueber, Kurt; Piferrer, Francesc; Guinand, Bruno; Bierne, Nicolas; Volckaert, Filip A. M.; Bargelloni, Luca; Power, Deborah M.; Bonhomme, Francois; Canario, Adelino V. M.; Reinhardt, RichardThe European sea bass (Dicentrarchus labrax) is a temperate-zone euryhaline teleost of prime importance for aquaculture and fisheries. This species is subdivided into two naturally hybridizing lineages, one inhabiting the north-eastern Atlantic Ocean and the other the Mediterranean and Black seas. Here we provide a high-quality chromosome-scale assembly of its genome that shows a high degree of synteny with the more highly derived teleosts. We find expansions of gene families specifically associated with ion and water regulation, highlighting adaptation to variation in salinity. We further generate a genome-wide variation map through RAD-sequencing of Atlantic and Mediterranean populations. We show that variation in local recombination rates strongly influences the genomic landscape of diversity within and differentiation between lineages. Comparing predictions of alternative demographic models to the joint allele-frequency spectrum indicates that genomic islands of differentiation between sea bass lineages were generated by varying rates of introgression across the genome following a period of geographical isolation.
- Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution rangePublication . Massa, S. I.; Pearson, G. A.; Aires, Tânia; Kube, M.; Olsen, J. L.; Reinhardt, Richard; Serrão, Ester; ARNAUD-HAOND, SophiePredicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera noltii during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to four recovery times following sub-lethal temperature stress, and a non-stressed control. We sequenced and analyzed 7009 sequence reads from 30 min, 2 h, 4 h and 24 h after the beginning of the heat-shock (AHS), and 1585 from the control library, for a total of 8594 sequence reads. Among 51 Tentative UniGenes (TUGs) exhibiting significantly different expression between libraries, 19 (37.3%) were identified as ‘molecular chaperones’ and were over-expressed following heat-shock, while 12 (23.5%) were ‘photosynthesis TUGs’ generally under-expressed in heat-shocked plants. A time course analysis of expression showed a rapid increase in expression of the molecular chaperone class, most of which were heat-shock proteins; which increased from 2 sequence reads in the control library to almost 230 in the 30 min AHS library, followed by a slow decrease during further recovery. In contrast, ‘photosynthesis TUGs’ were under-expressed 30 min AHS compared with the control library, and declined progressively with recovery time in the stress libraries, with a total of 29 sequence reads 24 h AHS, compared with 125 in the control. A total of 4734 TUGs were screened for EST-Single Sequence Repeats (EST-SSRs) and 86 microsatellites were identified.► Response to heat stress is very fast but gene expression returns to normal after 24 h. ► Photosynthesis-related genes were under-expressed after heat-shock. ► Heat-shock caused a quick rise in heat shock proteins and molecular chaperone expression.
- Genomic resources for the aquaculture of European sea bassPublication . Volckaert, F.; Batargias, C.; Bonhomme, F.; Canario, Adelino V. M.; Chistiakov, D.; Choudhuri, J. V.; Galibert, F.; Georgoudis, A.; Haley, Chris; Hellemans, Bart; Kuhl, H.; Kotoulas, Georgios; Law, A.; Libertini, A.; Magoulas, A.; McAndrew, B. J.; Reinhardt, Richard; Senger, Fabrice; Souche, E.; Tsigenopoulos, C.; Whitaker, H. A.The BASSMAP consortium, funded by the European Union, has been set up to improve the understanding of the genome of European sea bass (Dicentrarchus labrax). The specific aim is to locate genes of known function on the physical map and to compare specific regions among perciforms. We have produced an F1 cross of outbred sea bass as mapping panel and a Bacterial Artificial Chromosome library (7× redundancy and 165 kb average insert size). End sequencing of the BAC library is in progress and a radiation hybrid panel is under construction.
- Gill transcriptome response to changes in environmental calcium in the green spotted puffer fishPublication . Pinto, Patricia IS; Matsumura, H.; Thorne, Michael A. S.; Power, Deborah; Terauchi, Ryohei; Reinhardt, Richard; Canario, Adelino V. M.Abstract Background Calcium ion is tightly regulated in body fluids and for euryhaline fish, which are exposed to rapid changes in environmental [Ca2+], homeostasis is especially challenging. The gill is the main organ of active calcium uptake and therefore plays a crucial role in the maintenance of calcium ion homeostasis. To study the molecular basis of the short-term responses to changing calcium availability, the whole gill transcriptome obtained by Super Serial Analysis of Gene Expression (SuperSAGE) of the euryhaline teleost green spotted puffer fish, Tetraodon nigroviridis, exposed to water with altered [Ca2+] was analysed. Results Transfer of T. nigroviridis from 10 ppt water salinity containing 2.9 mM Ca2+ to high (10 mM Ca2+ ) and low (0.01 mM Ca2+) calcium water of similar salinity for 2-12 h resulted in 1,339 differentially expressed SuperSAGE tags (26-bp transcript identifiers) in gills. Of these 869 tags (65%) were mapped to T. nigroviridis cDNAs or genomic DNA and 497 (57%) were assigned to known proteins. Thirteen percent of the genes matched multiple tags indicating alternative RNA transcripts. The main enriched gene ontology groups belong to Ca2+ signaling/homeostasis but also muscle contraction, cytoskeleton, energy production/homeostasis and tissue remodeling. K-means clustering identified co-expressed transcripts with distinct patterns in response to water [Ca2+] and exposure time. Conclusions The generated transcript expression patterns provide a framework of novel water calcium-responsive genes in the gill during the initial response after transfer to different [Ca2+]. This molecular response entails initial perception of alterations, activation of signaling networks and effectors and suggests active remodeling of cytoskeletal proteins during the initial acclimation process. Genes related to energy production and energy homeostasis are also up-regulated, probably reflecting the increased energetic needs of the acclimation response. This study is the first genome-wide transcriptome analysis of fish gills and is an important resource for future research on the short-term mechanisms involved in the gill acclimation responses to environmental Ca2+ changes and osmoregulation.