Browsing by Author "Rompel, Annette"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
- Inhibition of Na+/K+- and Ca2+-ATPase activities by phosphotetradecavanadatePublication . Fraqueza, Gil; Fuentes, Juan; Krivosudský, Lukáš; Dutta, Saikat; Mal, Sib Sankar; Roller, Alexander; Giester, Gerald; Rompel, Annette; Aureliano, ManuelPolyoxometalates (POMs) are promising inorganic inhibitors for P-type ATPases. The experimental models used to study the effects of POMs on these ATPases are usually in vitro models using vesicles from several membrane sources. Very recently, some polyoxotungstates, such as the Dawson anion [P2W18O62]6-, were shown to be potent P-type ATPase inhibitors; being active in vitro as well as in ex-vivo. In the present study we broaden the spectrum of highly active inhibitors of Na+/K+-ATPase from basal membrane of epithelial skin to the bi-capped Keggin-type anion phosphotetradecavanadate Cs5.6H3.4PV14O42 (PV14) and we confront the data with activity of other commonly encountered polyoxovanadates, decavanadate (V10) and monovanadate (V1). The X-ray crystal structure of PV14 was solved and contains two trans-bicapped α-Keggin anions HxPV14O42(9-x)-. The anion is built up from the classical Keggin structure [(PO4)@(V12O36)] capped by two [VO] units. PV14 (10 μM) exhibited higher ex-vivo inhibitory effect on Na+/K+-ATPase (78%) than was observed at the same concentrations of V10 (66%) or V1 (33%). Moreover, PV14 is also a potent in vitro inhibitor of the Ca2+-ATPase activity (IC50 5 μM) exhibiting stronger inhibition than the previously reported activities for V10 (15 μM) and V1 (80 μM). Putting it all together, when compared both P-typye ATPases it is suggested that PV14 exibited a high potential to act as an in vivo inhibitor of the Na+/K+-ATPase associated with chloride secretion.
- Inhibition of SERCA and PMCA Ca2+-ATPase activities by polyoxotungstatesPublication . Aureliano, Manuel; Fraqueza, Gil; Berrocal, Maria; Cordoba-Granados, Juan J.; Gumerova, Nadiia I.; Rompel, Annette; Gutierrez-Merino, Carlos; Mata, Ana M.Plasma membrane calcium ATPases (PMCA) and sarco(endo) reticulum calcium ATPases (SERCA) are key proteins in the maintenance of calcium homeostasis. Herein, we compare for the first time the inhibition of SERCA and PMCA calcium pumps by several polyoxotungstates (POTs), namely by Wells-Dawson phospho-tungstate anions [P2W18O62]6-(intact, {P2W18}), [P2W17O61]10-(monolacunary, {P2W17}), [P2W15O56]12-(trilacunary, {P2W15}), [H2P2W12O48]12-(hexalacunary, {P2W12}), [H3P2W15V3O62]6- (trivanadium-substituted, {P2W15V3}) and by Preyssler-type anion [NaP5W30O110]14-({P5W30}). The speciation in the solu-tions of tested POTs was investigated by 31P and 51V NMR spectroscopy. The tested POTs inhibited SERCA Ca2+- ATPase activity, whereby the Preyssler POT showed the strongest effect, with an IC50 value of 0.37 mu M. For {P2W17} and {P2W15V3} higher IC50 values were determined: 0.72 and 0.95 mu M, respectively. The studied POTs showed to be more potent inhibitors of PMCA Ca2+-ATPase activity, with lower IC50 values for {P2W17}, {P5W30} and {P2W15V3}.
- Polyoxidovanadates' interactions with proteins: an overviewPublication . Aureliano, Manuel; Gumerova, Nadiia I.; Sciortino, Giuseppe; Garribba, Eugenio; McLauchlan, Craig C.; Rompel, Annette; Crans, Debbie C.Polyoxidovanadates (POVs, previously named polyoxovanadates) are a subgroup of polyoxidometalates (POMs, previously named polyoxometalates) with interesting pharmacological actions that have been tested as potential antidiabetic, antibacterial, antiprotozoal, antiviral, and anticancer drugs. They contain mainly vanadium and are able to interact with proteins, affecting various biological processes. The most studied POV is the isopolyoxidovanadate decavanadate (V-10), which interacts with proteins and/or enzymes such as tyrosine protein phosphatases, P-type ATPases, RNA triphosphatases, myosin and actin. However, in many POVs-protein systems, the binding sites and/or the residues involved in the interaction are not identified. In the present review, the interactions of POVs, as well as linear trivanadate (V-3), both linear and cyclic tetravanadate (V-4) and two proposed heptavanadate (V-7; which are better described by V-10 molecules), with proteins are described through X-ray crystallographic studies. Interactions with POVs through theoretical and spectroscopic studies of proteins related to muscle contraction, serum, oxidative stress, and diabetes were also discussed. In sum, herein, we describe POVs' interactions with various proteins including acid phosphatase A, receptor tyrosine kinase, ectonucleoside triphosphate diphosphohydrolase (NTPDases), transient receptor potential cation channel (TRPM4), phosphoglucomutases, P-type ATPases, myosin, actin, transferrin, albumin, and glucosidases, among others. The putative POVs' effects on proteins are impacted by the POV' stability and speciation. The modes of POVs' interactions include H-bond, electrostatic, H-bond + electrostatic, van der Waals, and covalent binding. The spectroscopic, X-ray and computational results, the sites and modes of binding are described in detail. (C) 2021 The Authors. Published by Elsevier B.V
- Polyoxometalates as potential next‐generation metallodrugs in the combat against cancerPublication . Bijelic, Aleksandar; Aureliano, Manuel; Rompel, AnnettePolyoxometalates (POMs) are an emerging class of inorganic metal oxides, which over the last decades demonstrated promising biological activities by the virtue of their great diversity in structures and properties. They possess high potential for the inhibition of various tumor types; however, their unspecific interactions with biomolecules and toxicity impede their clinical usage. The current focus of the field of biologically active POMs lies on organically functionalized and POM-based nanocomposite structures as these hybrids show enhanced anticancer activity and significantly reduced toxicity towards normal cells in comparison to unmodified POMs. Although the antitumor activity of POMs is well documented, their mechanisms of action are still not well understood. In this Review, an overview is given of the cytotoxic effects of POMs with a special focus on POM-based hybrid and nanocomposite structures. Furthermore, we aim to provide proposed mode of actions and to identify molecular targets. POMs are expected to develop into the next generation of anticancer drugs that selectively target cancer cells while sparing healthy cells.
- Polyoxovanadates with emerging biomedical activitiesPublication . Aureliano, Manuel; Gumerova, Nadiia I.; Sciortino, Giuseppe; Garribba, Eugenio; Rompel, Annette; Crans, Debbie C.Polyoxovanadates (POVs) are a subclass of a larger family of polyanionic group V and VI metal-oxo clus ters that are known as polyoxometalates (POMs). POMs have been found to have antidiabetic, antibacte rial, antiprotozoal, antiviral and anticancer activities, which have sparked interest in their use as bioinorganic drugs. Among POVs, decavanadate ([V10O28] 6 ; V10) is an isopolyoxovanadate recently described to have several medicinal applications. In the present review, recent insights into POVs with emergent anticancer, antimicrobial and antiviral applications are described. Additionally, POVs’ stability and speciation under experimental biological conditions as well as POVs (in particular, V10) in vivo and ex vivo effects are highlighted. Finally, we report the most important 21st century studies of POVs’ effects and/or targets against cancer, bacteria and viruses including: apoptosis, cell cycle arrest, interference with ions transport system, inhibition of mRNA synthesis, cell morphology changes, changes in metabolic pathways, phosphorylase enzyme inhibition and cell signaling, formation of reactive oxygen species, lipid peroxidation, inhibition of viral mRNA polymerase, inhibition of virus binding to the host cell, penetra tion and interaction with virus protein cages.
- The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectivesPublication . Aureliano, M.; Bijelic, Aleksandar; Rompel, AnnettePolyoxometalates (POMs) are, mostly anionic, metal oxide compounds that span a wide range of tunable physical and chemical features rendering them very interesting for biological purposes, an continuously emerging but little explored field. Due to their biological and biochemical effects, including antitumor, -viral and -bacterial properties, POMs and POM-based systems are considered as promising future metallodrugs. In this article, we focus on the antibacterial activity of POMs and their therapeutic potential in the battle against bacteria and their increasing resistance against pharmaceuticals. Recent advances in the synthesis of POMs are highlighted, with emphasis on the development and properties of biologically active POM-based hybrid and nanocomposite structures. By analysing the antibacterial activity and structure of POMs, putative mode of actions are provided, including potential targets for POM–protein interactions, and a structure–activity-relationship was established for a series of POMs against two bacteria, namely Helicobacter pylori and Streptococcus pneumoniae.
- The aquaporin-3-inhibiting potential of polyoxotungstatesPublication . Pimpão, Catarina; da Silva, Inês V.; Mósca, Andreia F.; Pinho, Jacinta O.; Gaspar, Maria Manuela; Gumerova, Nadiia I.; Rompel, Annette; Aureliano, Manuel; Soveral, GraçaPolyoxometalates (POMs) are of increasing interest due to their proven anticancer activities. Aquaporins (AQPs) were found to be overexpressed in tumors bringing particular attention to their inhibitors as anticancer drugs. Herein, we report for the first time the ability of polyoxotungstates (POTs), such as of Wells-Dawson P2W18, P2W12, and P2W15, and Preyssler P5W30 structures, to affect aquaporin-3 (AQP3) activity and impair melanoma cell migration. The tested POTs were revealed to inhibit AQP3 function with different effects, with P2W18, P2W12, and P5W30 being the most potent (50% inhibitory concentration (IC50) = 0.8, 2.8, and 3.2 µM), and P2W15 being the weakest (IC50 > 100 µM). The selectivity of P2W18 toward AQP3 was confirmed in yeast cells transformed with human aquaglyceroporins. The effect of P2W12 and P2W18 on melanoma cells that highly express AQP3 revealed an impairment of cell migration between 55% and 65% after 24 h, indicating that the anticancer properties of these compounds may in part be due to the blockage of AQP3-mediated permeability. Altogether, our data revealed that P2W18 strongly affects AQP3 activity and cancer cell growth, unveiling its potential as an anticancer drug against tumors where AQP3 is highly expressed.
- The biological applications of metals and metal complexesPublication . Aureliano, Manuel; Gumerova, Nadiia I.; Rompel, AnnetteOver the course of biological evolution, approximately 25 to 30 elements have been recognized as essential for the proper functioning of biological systems since the emergence of life [...]
- The P-type ATPase inhibiting potential of polyoxotungstates.Publication . Gumerova, Nadiia; Krivosudský, Lukáš; Fraqueza, Gil; Breibeck, Joscha; Al-Sayed, Emir; Tanuhadi, Elias; Bijelic, Aleksandar; Fuentes, Juan; Aureliano, M.; Rompel, AnnettePolyoxometalates (POMs) are transition metal complexes that exhibit a broad diversity of structures and properties rendering them promising for biological purposes. POMs are able to inhibit a series of biologically important enzymes, including phosphatases, and thus are able to affect many biochemical processes. In the present study, we analyzed and compared the inhibitory effects of nine different polyoxotungstates (POTs) on two P-type ATPases, Ca2+-ATPase from skeletal muscle and Na+/K+-ATPase from basal membrane of skin epithelia. For Ca2+-ATPase inhibition, an in vitro study was performed and the strongest inhibitors were determined to be the large heteropolytungstate K9(C2H8N)5[H10Se2W29O103] (Se2W29) and the Dawson-type POT K6[α-P2W18O62] (P2W18) exhibiting IC50 values of 0.3 and 0.6 μM, respectively. Promising results were also shown for the Keggin-based POTs K6H2[CoW11TiO40] (CoW11Ti, IC50 = 4 μM) and Na10[α-SiW9O34] (SiW9, IC50 = 16 μM), K14[As2W19O67(H2O)] (As2W19, IC50 = 28 μM) and the lacunary Dawson K12[α-H2P2W12O48] (P2W12, IC50 = 11 μM), whereas low inhibitory potencies were observed for the isopolytungstate Na12[H4W22O74] (W22, IC50 = 68 μM) and the Anderson-type Na6[TeW6O24] (TeW6, IC50 = 200 μM). Regarding the inhibition of Na+/K+-ATPase activity, for the first time an ex vivo study was conducted using the opercular epithelium of killifish in order to investigate the effects of POTs on the epithelial chloride secretion. Interestingly, 1 μM of the most potent Ca2+-ATPase inhibitor, Se2W29, showed only a minor inhibitory effect (14% inhibition) on Na+/K+-ATPase activity, whereas almost total inhibition (99% inhibition) was achieved using P2W18. The remaining POTs exhibited similar inhibition rates on both ATPases. These results reveal the high potential of some POTs to act as P-type ATPase inhibitors, with Se2W29 showing high selectivity towards Ca2+-ATPase.
- The preyssler-type polyoxotungstate exhibits anti-quorum sensing, antibiofilm, and antiviral activitiesPublication . Faleiro, Maria Leonor; Marques, Ana; Martins, João; Jordão, Luísa; Nogueira, Isabel; Gumerova, Nadiia I.; Rompel, Annette; Aureliano, M.The increase in bacterial resistance to antibiotics has led researchers to find new compounds or find combinations between different compounds with potential antibacterial action and with the ability to prevent the development of antibiotic resistance. Polyoxotungstates (POTs) are inorganic clusters that may fulfill that need, either individually or in combination with antibiotics. Herein, we report the ability of the polyoxotungstates (POTs) with Wells-Dawson P2W18, P2W17, P2W15, and Preyssler P5W30 type structures to differently affect Gram-negative and Gram-positive microorganisms, either susceptible or resistant to antibiotics. The compound P5W30 showed the highest activity against the majority of the tested bacterial strains in comparison with the other tested POTs (P2W15, P2W17 and P2W18) that did not show inhibition zones for the Gram-negative bacteria, A. baumanii I73775, E. coli DSM 1077, E. coli I73194, K. pneumoniae I7092374, and P. aeruginosa C46281). Generally, the results evidenced that Gram-positive bacteria are more susceptible to the POTs tested. The compound P5W30 was the one most active against S. aureus ATCC 6538 and MRSA16, reaching <0.83 mg·mL−1 (100 µM) and 4.96 mg·mL−1 (600 µM), respectively. Moreover, it was verified by NMR spectroscopy that the most promising POT, P5W30, remains intact under all the experimental conditions, after 24 h at 37 ◦C. This prompted us to further evaluate the anti-quorum sensing activity of P5W30 using the biosensor Chromobacterium violaceum CV026, as well as its antibiofilm activity both individually and in combination with the antibiotic cefoxitin against the methicillin-resistant Staphylococcus aureus 16 (MRSA16). P5W30 showed a synergistic antibacterial effect with the antibiotic cefoxitin and chloramphenicol against MRSA16. Moreover, the antibiofilm activity of P5W30 was more pronounced when used individually, in comparison with the combination with the antibioticcefoxitin. Finally, the antiviral activity of P5W30 was tested using the coliphage Qβ, showing a dosedependent response. The maximum inactivation was observed at 750 µM (6.23 mg·mL−1 ). In sum, P5W30 shows anti-quorum sensing and antibiofilm activities besides being a potent antibacterial agent against S. aureus and to exhibit antiviral activities against enteric viruses.