Browsing by Author "Rozenfeld, A. F."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Evolutionary and ecological trees and networksPublication . Hernández-García, E.; Herrada, E. A.; Rozenfeld, A. F.; Tessone, C. J.; Eguíluz, Víctor M.; Duarte, C. M.; ARNAUD-HAOND, Sophie; Serrão, EsterEvolutionary relationships between species are usually represented in phylogenies, i.e. evolutionary trees, which are a type of networks. The terminal nodes of these trees represent species, which are made of individuals and populations among which gene flow occurs. This flow can also be represented as a network. In this paper we briefly show some properties of these complex networks of evolutionary and ecological relationships. First, we characterize large scale evolutionary relationships in the Tree of Life by a degree distribution. Second, we represent genetic relationships between individuals of a Mediterranean marine plant, Posidonia oceanica, in terms of a Minimum Spanning Tree. Finally, relationships among plant shoots inside populations are represented as networks of genetic similarity.
- Network analysis identifies weak and strong links in a metapopulation systemPublication . Rozenfeld, A. F.; ARNAUD-HAOND, Sophie; Hernández-García, E.; Eguíluz, Víctor M.; Serrão, Ester; Duarte, C. M.The identification of key populations shaping the structure and connectivity of metapopulation systems is a major challenge in population ecology. The use of molecular markers in the theoretical framework of population genetics has allowed great advances in this field, but the prime question of quantifying the role of each population in the system remains unresolved. Furthermore, the use and interpretation of classical methods are still bounded by the need for a priori information and underlying assumptions that are seldom respected in natural systems. Network theory was applied to map the genetic structure in a metapopulation system by using microsatellite data from populations of a threatened seagrass, Posidonia oceanica, across its whole geographical range. The network approach, free from a priori assumptions and from the usual underlying hypotheses required for the interpretation of classical analyses, allows both the straightforward characterization of hierarchical population structure and the detection of populations acting as hubs critical for relaying gene flow or sustaining the metapopulation system. This development opens perspectives in ecology and evolution in general, particularly in areas such as conservation biology and epidemiology, where targeting specific populations is crucial.
- Spectrum of genetic diversity and networks of clonal organismsPublication . Rozenfeld, A. F.; ARNAUD-HAOND, Sophie; Hernández-García, E.; Eguíluz, Víctor M.; Matías, M. A.; Serrão, Ester; Duarte, C. M.Clonal reproduction characterizes a wide range of species including clonal plants in terrestrial and aquatic ecosystems, and clonal microbes such as bacteria and parasitic protozoa, with a key role in human health and ecosystem processes. Clonal organisms present a particular challenge in population genetics because, in addition to the possible existence of replicates of the same genotype in a given sample, some of the hypotheses and concepts underlying classical population genetics models are irreconcilable with clonality. The genetic structure and diversity of clonal populations were examined using a combination of new tools to analyse microsatellite data in the marine angiosperm Posidonia oceanica. These tools were based on examination of the frequency distribution of the genetic distance among ramets, termed the spectrum of genetic diversity (GDS), and of networks built on the basis of pairwise genetic distances among genets. Clonal growth and outcrossing are apparently dominant processes, whereas selfing and somatic mutations appear to be marginal, and the contribution of immigration seems to play a small role in adding genetic diversity to populations. The properties and topology of networks based on genetic distances showed a ‘small-world’ topology, characterized by a high degree of connectivity among nodes, and a substantial amount of substructure, revealing organization in subfamilies of closely related individuals. The combination of GDS and network tools proposed here helped in dissecting the influence of various evolutionary processes in shaping the intra-population genetic structure of the clonal organism investigated; these therefore represent promising analytical tools in population genetics.
