Browsing by Author "Soares, Carlos A. Mota"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
- Análise geometricamente não-linear de estruturas adaptativas piezolaminadasPublication . Moita, José Mateus Simões; Soares, Cristovão M. Mota; Soares, Carlos A. MotaNeste trabalho apresenta-se um modelo de elementos finitos, baseado na teoria clássica de placas, para a análise linear e não-linear de estruturas do tipo placa/casca integrando sensores e actuadores piezoeléctricos. É usado um simples e eficiente elemento placa/casca triangular plano de 3 nós, e em cuja formulação se introduz um grau de liberdade referente ao potencial eléctrico, por cada camada piezoeléctrica do elemento finito. É utilizada a formulação Lagrangeana actualizada associada à tecnica de Newton - Raphson para a solução iterativa das equações de equilibrio .O modelo pode ser aplicado a cascas piezolaminadas com geometria e carregamento arbitrários. Apresentam-se vários exemplos ilustrativos cujos resultados mostram a eficiencia do modelo proposto.
- Controlo activo de ressonância em estruturas piezolaminadasPublication . Moita, José Mateus Simões; Soares, Cristovão M. Mota; Soares, Carlos A. MotaNeste trabalho apresenta-se um modelo de elementos finitos baseado na teoria de deformação de corte de 3ª ordem, o qual é aplicado ao controlo activo de vibrações, incluindo o fenómeno de ressonância, em estruturas laminadas. Sensores e actuadores piezoeléctricos na forma de lâminas estão colocadas na superfície superior e inferior do laminado, permitindo assim um sistema de controlo, ligando os efeitos piézoeléctricos directo e converso, atrvés de um algoritmo baseado na realimentação com velocidade negativa. As estruturas são forçadas a vibrar num determinado modo, e a sua amplitude no tempo é calculada usando o método de Newmark. Apresenta-se uma aplicação ilustrativa.
- Core and patch position optimizations for vibration control of piezolaminated structuresPublication . Moita, José Mateus Simões; Correia, Victor; Soares, Cristovão M. Mota; Soares, Carlos A. MotaThis paper deals with a finite formulation baserd on the classical laminated plate tehory, for active control of thin late laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previuos optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position in performed to maximize the piezoelectric actuator efficiency. the simulating annealing mthod is used for these purposes. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich can be surface bonded or imbedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorirhm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.
- Design of laminated structures using piezoelectric materialsPublication . Simões Moita, José Mateus; Herskovits, José; Soares, Cristovão M. Mota; Soares, Carlos A. MotaComposite structures incorporating piezoelectric sensors and actuators are increasingly becoming important due to the offer of potential benefits in a wide range of engineering applications such as vibration and noise supression, shape control and precisition positioning. This paper presents a finit element formulation based on classical laminated plate theory for laminated structures with integrated piezoelectric layers or patches, acting as actuators. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezsoelectric elementlayer or patch, witch are surface bonded on the laminate. An optimization of the patches position is performed to maximize the piezoelectric actuators efficiency as well as, the electric potential distribuition is search to reach the specified structure transverse displacement distribuition (shape control). A gradient based algorithm is used for this purpose. The model is applied in the optimization of illustrative laminated plate cases, and the results are presented and discussed.
- Finit element model for active control of adaptive laminated structuresPublication . Moita, José Mateus Simões; Soares, Cristovão M. Mota; Soares, Carlos A. MotaA finite element formulation for active vibration control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators in presented. The finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of freedom for the generalized displacements and one electrical potential degree of freedom for each piezoelectric element layer, and is based on the kirchhoff classical laminated theory. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers, and Newmark method is used to calculate yhe dynamic response of the laminated structures. The model is applied in the solution of several illustrative cases, and the results are presented and discussed.
- Higher order model for analysis of magneto-electro-elastic platesPublication . Moita, José Mateus Simões; Soares, Cristovão M. Mota; Soares, Carlos A. MotaIn this paper is presented an higher-order model for static and free vibration analyses of magneto-electro-elastic plates, wich allows the analysis of thin and thick plates, which allows the analysis of thin and thick plates. The finite element model is a single layer triangular plate/shell element with 24 degrees of fredom for the generalized mechanical displacements. Two degrees on freedom are introduced per each element layer, one corresponding to the electrical potential and the other for magnetic potential. Solutions are obtained for different laminations of the magneto-electro-elastic plate, as well as for the purely elastic plate as a special case.
- Non-linear analysis of composite structures with integrated piezoelectric sensors and actuatorsPublication . Moita, José Mateus Simões; Soares, Cristovão M. Mota; Soares, Carlos A. MotaThis paper deals with the geometrically non linear analysis of thin plate/shell laminated structures with embedded integrated piezoelectric actuors or sensors layers and/or patches.The model is based on the Kirchhoff classical laminated theory and can be applied to plate and shell adaptive structures with arbitrary shape, general mechanical and electrical loadings. the finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of fredom for the generalized displacements and one eçlectrical potential degree of freedom for each piezoelectric layer or patch. An updated Lagrangian formulation associated to Newton-Raphson technique is used to solve incrementally and iteratively the equilibrium equation.The model is applied in the solution of four illustrative cases, and the results are compared and discussedwith alternative solutions when available.
- Non-linear analysis of piezolaminated structuresPublication . Moita, José Mateus Simões; Soares, Cristovão M. Mota; Soares, Carlos A. MotaIn the recent years the study of smart structures has attracted significant researchers, due to their potential benefits in a wide range of applications, such as shape control, vibration suppression, noise attenuation and damage detection. The applications in aerospace industry are of great relevance, such as in active control of airplane wings, helicopter blade rotor, space antenna. The use of smart materials, such as piezoelectric materials, in the form of layers or patches embedded and/or surface bonded on laminated composite structures, can provide structures that combine the superior mechanical properties of composite materials and the capability to sense and adapt their static and dynamic response, becoming adaptive structures. The piezoelectric materials have the property of generate electrical charge under mechanical load or deformation, and the reverse, applying an electrical field to the material results in mechanical strain or stresses.
- Non-linear finite element analysis of thin composite structuresPublication . Moita, José Mateus Simões; Soares, Cristovão M. Mota; Soares, Carlos A. MotaA non-conforming three-node triangular finite element with 18 degree of freedom, is used in conjugation with the Kirchhoff theory for the non-linear analysis of thin composite plate-shell structure. The formulation of the geometrically non-linear analysis is based on an updated Lagrangian formulation associated with the Newton-Raphson iterative technique, which incorporates an automatic arc-length control procedure.
- Optimal dynamic control of laminated adaptive structures using a higher order model and a genetic algorithmPublication . Moita, José Mateus Simões; Martins, Pedro G.; Soares, Cristovão M. Mota; Soares, Carlos A. MotaThis paper deals with a finite element formulation based on the classical laminated plate theory, for active control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position is performed to maximize the piezoelectric actuator efficiency. The genetic algorithm is used for these purposes. The finite element model is a single layer triangular plate/shell element with 24 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, which can be surface bonded or embedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.