Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 5 of 5
  • Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4
    Publication . Schüler, Lisa Maylin; Santos, Tamara; Pereira, Hugo; Duarte, Paulo; Katkam, Dr. Gangadhar N.; Florindo, Claudia; Schulze, Peter S.C.; Barreira, Luísa; Varela, João
    The industrial microalga Tetraselmis sp. CTP4 is a promising candidate for aquaculture feed, novel food, cosmeceutical and nutraceutical due to its balanced biochemical profile. To further upgrade its biomass value, carotenogenesis was investigated by testing four environmental factors, namely temperature, light intensity, salinity and nutrient availability over different growth stages. The most important factor for carotenoid induction in this species is a sufficient supply of nitrates leading to an exponential growth of the cells. Furthermore, high temperatures of over 30 degrees C compared to lower temperatures (10 and 20 degrees C) induced the accumulation of carotenoids in this species. Remarkably, the two different branches of carotenoid synthesis were regulated depending on different light intensities. Contents of beta-carotene were 3-fold higher under low light intensities (33 mu mol m(-2) s(-1)) while lutein contents increased 1.5-fold under higher light intensities (170 and 280 mu mol m(-2) s(-1)). Nevertheless, highest contents of carotenoids (8.48 +/- 0.47 mg g(-1) DW) were found upon a thermal upshift from 20 degrees C to 35 degrees C after only two days at a light intensity of 170 mu mol m(-2) s(-1). Under these conditions, high contents of both lutein and beta-carotene were reached accounting for 3.17 +/- 0.18 and 3.21 +/- 0.18 mg g(-1) DW, respectively. This study indicates that Tetraselmis sp. CTP4 could be a sustainable source of lutein and beta-carotene at locations where a robust, euryhaline, thermotolerant microalgal strain is required.
  • Cystoseira algae (Fucaceae): update on their chemical entities and biological activities
    Publication . Bruno De Sousa, Carolina; Gangadhar N. Katkam, Dr.; Macridachis, Jorge; Pavao, Madalena; Morais, Thiago R.; Campino, Lenea; J. C. or Varela J. or Varela J.C.S., Varela; Lago, Joao Henrique G.
    Cystoseira (Sargassaceae) is a genus of marine brown algae composed of about 40 species, which is distributed along the Eastern Atlantic and Mediterranean coasts. The biological potential of the Cystoseira genus has been investigated and several activities have been reported. Chemically, this genus contains a wide variety of secondary metabolites, such as terpenoids, steroids, phlorotannins and phenolic compounds. Additionally, other chemical components as, for instance, carbohydrates, triacylglycerolsgatty acids, pigments as well as vitamins have been identified in the studied species. Some of the isolated compounds were associated with the reported pharmacological properties, as for example antioxidant, anti-inflammatory, cytotoxicity, anticancer, cholinesterase inhibition, anti-diabetic, activities but also antibacterial, antifungal and anti-parasitic activities. In this review, we provide a comprehensive overview of the compounds isolated and identified after 1995 from the different species of Cystoseira, compiling more than 200 compounds isolated, together with their therapeutic potential. (C) 2017 Elsevier Ltd. All rights reserved.
  • Improvement of carotenoid extraction from a recently isolated, robust microalga, Tetraselmis sp. CTP4 (chlorophyta)
    Publication . Lisa Schueler, Lisa M. Schueler; Katkam, Dr. Gangadhar N.; Duarte, Paulo A. S.; Placines, Chloé; Molina-Márquez, Ana María; Léon-Bañares, Rosa; Sousa, Vânia S.; Varela, João; Barreira, Luísa
    In recent years, there has been increasing consumer interest in carotenoids, particularly of marine sustainable origin with applications in the food, cosmeceutical, nutritional supplement and pharmaceutical industries. For instance, microalgae belonging to the genus Tetraselmis are known for their biotechnologically relevant carotenoid profile. The recently isolated marine microalgal strain Tetraselmis sp. CTP4 is a fast-growing, robust industrial strain, which has successfully been produced in 100-m3 photobioreactors. However, there are no reports on total carotenoid contents from this strain belonging to T. striata/convolutae clade. Although there are several reports on extraction methods targeting chlorophytes, extraction depends on the strength of cell coverings, solvent polarity and the nature of the targeted carotenoids. Therefore, this article evaluates different extraction methods targeting Tetraselmis sp. CTP4, a strain known to contain a mechanically resistant theca. Here, we propose a factorial experimental design to compare extraction of total carotenoids from wet and freeze-dried microalgal biomass using four different solvents (acetone, ethanol, methanol or tetrahydrofuran) in combination with two types of mechanical cell disruption (glass beads or dispersion). The extraction efficiency of the methods was assessed by pigment contents and profiles present in the extracts. Extraction of wet biomass by means of glass bead-assisted cell disruption using tetrahydrofuran yielded the highest amounts of lutein and β-carotene (622 ± 40 and 618 ± 32 µg g-1 DW, respectively). Although acetone was slightly less efficient than tetrahydrofuran, it is preferable due to its lower costs and toxicity.
  • Juncaceae species as sources of innovative bioactive compounds for the food industry: In vitro antioxidant activity, neuroprotective properties and in silico studies
    Publication . Rodrigues, Maria João; Gangadhar N. Katkam, Dr.; Zengin, Gokhan; Mollica, Adriano; Varela, João; Barreira, Luísa; L, Custódio
    Several Juncus species are traditionally used as sedative and to treat health problems like insomnia. This work was based on the hypothesis that Juncus acutus, J. maritimus and J. inflexus may have molecules with bioactivities relevant for the improvement of cognitive functions and thus with potential use as food additives and/or nutraceuticals. Therefore leaves and roots extracts of those species were evaluated for radical scavenging (RSA) and metal chelating activities, and for in vitro inhibition of acetyl-(AChE) and butyrylcholinesterase (BuChE). The bioactive compound was isolated and identified by HPLC-DAD, and its anticholinesterase capacity was determined by different assays. Docking studies were performed to elucidate its inhibitory mechanism. The dichloromethane root extract of J. acutus had the highest RSA against DPPH and ABTS radicals, and the dichloromethane extract of J. maritimus leaves had the uppermost FRAP. The dichloromethane extract from J. acutus leaves had the strongest BuChE inhibition. Juncunol was the bioactive compound, exhibiting dual anticholinesterase capacity on enzyme-based assays and AChE inhibition in neuronal and glial cells in vitro. Molecular docking studies indicate juncunol as a competitive reversible inhibitor. Our results suggest that Juncus spp. can be sources of bioactive compounds with application in the food industry as cognitive-enhancer nutraceuticals. (C) 2017 Elsevier Ltd. All rights reserved.
  • Microalgae-based unsaponifiable matter as source of natural antioxidants and metal chelators to enhance the value of wet Tetraselmis chuii biomass
    Publication . Gangadhar N. Katkam, Dr.; H., Pereira; Rodrigues, Maria João; L, Custódio; Barreira, Luísa; Malcata, F. Xavier; J. C. or Varela J. or Varela J.C.S., Varela
    The present work aimed to determine the antioxidant, metal chelating and neuroprotective potential of the unsaponifiable matter (UM) of Tetraselmis chuii to be applied to a biorefinery setting. The UM obtained via saponification from crude lipids extracted from microalgal wet biomass showed a radical scavenging activity (RSA) towards the DPPH radical of 90.7 +/- 1.3% and 57.1 +/- 1.2% at a concentration of 10 and 5 mg/ mL, respectively. The UM fraction also displayed metal chelating capacity at a concentration of 5 mg/ mL: 58.5 +/- 1.4% and 50.9 +/- 4.0% for copper and iron, respectively. The chemical characterization of the UM revealed significant levels of total phenolics (TPC, 13.61 mg GAE/g) and carotenoids (2.45 mg/g of beta-carotene, lutein and violaxanthin). Overall, the separation of the UM containing high value metabolites might significantly upgrade the total wet biomass value in a biorefinery, allowing the exploitation of a stream with relevant antioxidant and metal chelating activities.