Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Ocean literacy to mainstream ecosystem services concept in formal and informal education: the example of coastal ecosystems of Southern Portugal
    Publication . Barracosa, Helena; de los Santos, Carmen B.; Martins, Márcio; Freitas, Cátia; Santos, Rui
    The concept of ecosystem services (ES) emerges as strategic to explain the influences that the ocean, and in particular coastal ecosystems, have on us and how we influence them back. Despite being a term coined several decades ago and being already widespread in the scientific community and among policy-makers, the ES concept still lacks recognition among citizens and educators. There is therefore a need to mainstream this concept in formal education and through Ocean Literacy resources. Although important developments in OL were done in the United States, particularly through the National Marine Educators Association (NMEA), this concept was only recently introduced in Europe. In Portugal, several informal OL education programs were developed in the last years, yet formal education on OL and, in particular, on ES is still very deficient. To address this limitation, the "Environmental Education Network for Ecosystem Services" (REASE), founded in 2017 in the Algarve region by a consortium of educational, environmental and scientific institutions, aims to increase OL through the dissemination of the perspective of how ES provided by coastal vegetation may contribute to the human well-being. The projects and activities implemented by REASE focus mostly on formal-education of school children and include: (1) capacity building for K-12 teachers, (2) educational programs to support and develop ES projects in schools, including a citizen science project to evaluate blue carbon stocks in the Algarve, (3) the publication of a children's book about the ES provided by the local Ria Formosa coastal lagoon, with a community-based participatory design (illustrations made by schoolchildren) and (4) a diverse array of informal education activities to raise awareness on the importance of coastal ecosystems on human well-being. REASE challenges are being successfully addressed by identifying threats to local coastal ecosystems that people worry about, and highlighting solutions to improve and maintain their health.
  • Vertical intertidal variation of organic matter stocks and patterns of sediment deposition in a mesotidal coastal wetland
    Publication . de los Santos, Carmen B.; Lahuna, François; Silva, André; Freitas, Cátia; Martins, Márcio; Carrasco, A. Rita; Santos, Rui
    Tidal coastal wetlands, common home to seagrass and salt marshes, are relevant carbon sinks due to their high capacity to accumulate and store organic carbon in their sediments. Recent studies demonstrated that the spatial variability of this organic carbon within the same wetland system can be significant. Some of the environmental drivers of this spatial variability remain understudied and the selection of the most relevant ones can be context dependent. Here we investigated the role of bed elevation, hydrodynamics, and habitat type (salt marsh and seagrass) on the organic matter (OM) net deposition-resuspension rate and superficial sedimentary stocks (top 5 cm) at the tidal wetlands of the Ria Formosa, a mesotidal coastal lagoon in South Portugal. Results showed that two vectors of spatial variation need to be considered to describe the intertidal sedimentary OM stocks: the bed elevation that imposes a decrease of the hydroperiod and thus the change of habitat from the lower seagrass Z. noltei to the upper saltmarsh S. maritimus, and the horizontal spatial variation along the secondary channels of the lagoon that imposes a decrease in the current flow velocity magnitude. The multiple linear regression analyses, using data from 40 sampling points, explained 59% of the variation of the superficial sedimentary stocks of OM in salt marshes and seagrasses of the Ria Formosa lagoon and revealed that stocks generally decrease with elevation, yet with variation among sites and habitats. It was also found that the decrease of the OM net deposition-resuspension rate with bed elevation was exponential. Our study emphasizes the importance of considering multiple environmental drivers and spatial variation for regional estimations of organic matter (and organic carbon) sedimentary stocks in coastal wetlands.
  • Seagrass meadows improve inflowing water quality in aquaculture ponds
    Publication . de los Santos, Carmen B.; Olivé, Irene; Moreira, Márcio; Silva, André; Freitas, Cátia; Araújo Luna, Ravi; Quental-Ferreira, Hugo; Martins, Márcio; Costa, Monya; Silva, João; Cunha, Maria Emilia; Soares, Florbela; Pousão-Ferreira, Pedro; Santos, Rui
    Water quality is critical for fish health in aquaculture production. In flow-through systems, the inflowing water normally requires quality controls and treatments for being supplied from coastal water bodies that can be polluted by nutrients, suspended solids, and microorganisms. Here we assess how seagrass meadows benefit aquaculture systems through the provision of ecosystem services (water filtration, biological control, and regulation of dissolved gasses) in the water reservoir that supplies earthen ponds in an aquaculture system in southern Portugal. In the 1.45-ha reservoir, seagrasses retained daily an estimate of 0.8–1.8 kg d−1 of nitrogen, 0.04–0.07 kg d−1 of phosphorus in their biomass, and 0.7–1.1 kg dw d−1 of suspended total particulate matter, bringing benefits in terms of nutrient and particle removal from the water column. Diel and spatial variation in faecal coliforms levels (Escherichia coli) in the reservoir suggested that seagrasses, in combination with light exposure, may reduce the levels of this pathogen. Furthermore, the seagrass-dominated system oxygenated the water through photosynthesis at a faster rate than the respiratory oxygen consumption, maintaining the system above the aquaculture minimum oxygen. This study demonstrates that seagrasses can be used as a nature-based solution to overcome water quality challenges in flow-through aquaculture ponds.