Repository logo
 
Loading...
Profile Picture
Person

Pombinho de Araújo, Inês Maria

Search Results

Now showing 1 - 10 of 18
  • Specificity in S-Nitrosylation: a short-range mechanism for NO signaling?
    Publication . Martinez-Ruiz, Antonio; Araújo, Inês; Izquierdo-Alvarez, Alicia; Hernansanz-Agustin, Pablo; Lamas, Santiago; Serrador, Juan M.
    Significance: Nitric oxide (NO) classical and less classical signaling mechanisms (through interaction with soluble guanylate cyclase and cytochrome c oxidase, respectively) operate through direct binding of NO to protein metal centers, and rely on diffusibility of the NO molecule. S-Nitrosylation, a covalent post-translational modification of protein cysteines, has emerged as a paradigm of nonclassical NO signaling. Recent Advances: Several nonenzymatic mechanisms for S-nitrosylation formation and destruction have been described. Enzymatic mechanisms for transnitrosylation and denitrosylation have been also studied as regulators of the modification of specific subsets of proteins. The advancement of modification-specific proteomic methodologies has allowed progress in the study of diverse S-nitrosoproteomes, raising clues and questions about the parameters for determining the protein specificity of the modification. Critical Issues: We propose that S-nitrosylation is mainly a short-range mechanism of NO signaling, exerted in a relatively limited range of action around the NO sources, and tightly related to the very controlled regulation of subcellular localization of nitric oxide synthases. We review the nonenzymatic and enzymatic mechanisms that support this concept, as well as physiological examples of mammalian systems that illustrate well the precise compartmentalization of S-nitrosylation. Future Directions: Individual and proteomic studies of protein S-nitrosylation-based signaling should take into account the subcellular localization in order to gain further insight into the functional role of this modification in (patho)physiological settings. Antioxid. Redox Signal. 19, 1220-1235.
  • Ultrasensitive gold micro-structured electrodes enabling the detection of extra-cellular long-lasting potentials in astrocytes populations
    Publication . Mestre, Ana L. G.; Cerquido, Monica; INÁCIO, PEDRO; Asgarifar, Sanaz; Lourenco, Ana S.; Lurdes S. Cristiano, M.; Aguiar, Paulo; Medeiros, Maria C. R.; Araújo, Inês; Ventura, Joao; Gomes, Henrique L.
    Ultra-sensitive electrodes for extracellular recordings were fabricated and electrically characterized. A signal detection limit defined by a noise level of 0.3-0.4 mu V for a bandwidth of 12.5 Hz was achieved. To obtain this high sensitivity, large area (4 mm(2)) electrodes were used. The electrode surface is also micro-structured with an array of gold mushroom-like shapes to further enhance the active area. In comparison with a flat gold surface, the micro-structured surface increases the capacitance of the electrode/electrolyte interface by 54%. The electrode low impedance and low noise enable the detection of weak and low frequency quasi-periodic signals produced by astrocytes populations that thus far had remained inaccessible using conventional extracellular electrodes. Signals with 5 mu V in amplitude and lasting for 5-10 s were measured, with a peak-to-peak signal-to-noise ratio of 16. The electrodes and the methodology developed here can be used as an ultrasensitive electrophysiological tool to reveal the synchronization dynamics of ultra-slow ionic signalling between non-electrogenic cells.
  • Regulation of injury-induced neurogenesis by Nitric Oxide
    Publication . Carreira, Bruno P.; Carvalho, Caetana M.; Araújo, Inês
    The finding that neural stem cells (NSCs) are able to divide, migrate, and differentiate into several cellular types in the adult brain raised a new hope for restorative neurology. Nitric oxide (NO), a pleiotropic signaling molecule in the central nervous system (CNS), has been described to be able to modulate neurogenesis, acting as a pro-or antineurogenic agent. Some authors suggest that NO is a physiological inhibitor of neurogenesis, while others described NO to favor neurogenesis, particularly under inflammatory conditions. Thus, targeting the NO system may be a powerful strategy to control the formation of new neurons. However, the exact mechanisms by which NO regulates neural proliferation and differentiation are not yet completely clarified. In this paper we will discuss the potential interest of the modulation of the NO system for the treatment of neurodegenerative diseases or other pathological conditions that may affect the CNS.
  • Ear wound regeneration in the African spiny mouse Acomys cahirinus
    Publication . Santos Matias, Dino; Rita, Ana Martins; Casanellas, Ignasi; Ova, Adelia Brito; Araújo, Inês; Power, Deborah; Tiscornia, Gustavo
    While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four-millimeter-diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention.
  • Differential contribution of the guanylyl cyclase-cyclic GMP-protein kinase g pathway to the proliferation of neural stem cells stimulated by nitric oxide
    Publication . Carreira, Bruno P.; Morte, Maria Inêss; Lourenço, Ana Sofia; Santos, Ana Isabel; Inácio, Ângela; Ambrósio, António F.; Carvalho, Caetana M.; Araújo, Inês
    Nitric oxide (NO) is an important inflammatory mediator involved in the initial boost in the proliferation of neural stem cells following brain injury. However, the mechanisms underlying the proliferative effect of NO are still unclear. The aim of this work was to investigate whether cyclic GMP (cGMP) and the cGMP-dependent kinase (PKG) are involved in the proliferative effect triggered by NO in neural stem cells. For this purpose, cultures of neural stem cells isolated from the mouse subventricular zone (SVZ) were used. We observed that long-term exposure to the NO donor (24 h), NOC-18, increased the proliferation of SVZ cells in a cGMP-dependent manner, since the guanylate cyclase inhibitor, ODQ, prevented cell proliferation. Similarly to NOC-18, the cGMP analogue, 8-Br-cGMP, also increased cell proliferation. Interestingly, shorter exposures to NO (6 h) increased cell proliferation in a cGMP-independent manner via the ERK/MAP kinase pathway. The selective inhibitor of PKG, KT5823, prevented the proliferative effect induced by NO at 24 h but not at 6 h. In conclusion, the proliferative effect of NO is initially mediated by the ERK/MAPK pathway, and at later stages by the GC/cGMP/PKG pathway. Thus, our work shows that NO induces neural stem cell proliferation by targeting these two pathways in a biphasic manner. Copyright (C) 2012 S. Karger AG, Basel
  • Deregulation of the retinal renin-angiotensin system precedes the onset of diabetic retinopathy
    Publication . S, Simão; Bitoque, D. B.; Santos, D. F.; Araújo, Inês; Silva, G. A.
    The renin-angiotensin system (RAS) is a set of complex pathways with a well-defined function in the regulation of blood pressure and body fluid homeostasis.
  • Stimulation of neural stem cell proliferation by inhibition of phosphodiesterase 5
    Publication . Santos, Ana Isabel; Carreira, Bruno P.; Nobre, Rui Jorge; Carvalho, Caetana M.; Araújo, Inês
    The involvement of nitric oxide (NO) and cyclic GMP (cGMP) in neurogenesis has been progressively unmasked over the last decade. Phosphodiesterase 5 (PDE5) specifically degrades cGMP and is highly abundant in the mammalian brain. Inhibition of cGMP hydrolysis by blocking PDE5 is a possible strategy to enhance the first step of neurogenesis, proliferation of neural stem cells (NSC). In this work, we have studied the effect on cell proliferation of 3 inhibitors with different selectivity and potency for PDE5, T0156, sildenafil, and zaprinast, using subventricular zone-(SVZ-) derived NSC cultures. We observed that a short-(6 h) or a long-term (24 h) treatment with PDE5 inhibitors increased SVZ-derived NSC proliferation. Cell proliferation induced by PDE5 inhibitors was dependent on the activation of the mitogen-activated protein kinase (MAPK) and was abolished by inhibitors of MAPK signaling, soluble guanylyl cyclase, and protein kinase G. Moreover, sildenafil neither activated ERK1/2 nor altered p27(Kip1) levels, suggesting the involvement of pathways different from those activated by T0156 or zaprinast. In agreement with the present results, PDE5 inhibitors may be an interesting therapeutic approach for enhancing the proliferation stage of adult neurogenesis.
  • Extracellular electrophysiological based sensor to monitor cancer cells cooperative migration and cell-cell connections
    Publication . Asgarifar, Sanaz; Mestre, Ana L. G.; Félix, Rute; Inacio, Pedro M. C.; Lurdes S. Cristiano, M.; Medeiros, Maria C. R.; Araújo, Inês; Power, Deborah; Gomes, Henrique L.
    Herein, we describe an electrophysiological based sensor that reproducibly monitors and quantifies in real-time collective migration and the formation of cell-cell junctions by C6 glioma cells seeded on top of electrodes. The signal amplitude and frequency generated by the migrating cells changed over time and these parameters were used to accurately calculate the migration speed. Electrophysiological measurements could also distinguish individual from collective cell migration. The migration of densely packed cells generated strong signals, while dispersed cells showed weak bioelectrical activity. We propose this electrophysiological technique as a cell-based biosensor to gain insight into the mechanisms of cooperative migration of cancer cells. Possible applications include screening for anti-migratory compounds, which may lead to the development of novel strategies for antineoplastic chemotherapy.
  • S-nitrosation and neuronal plasticity
    Publication . Santos, Ana Isabel; Martinez-Ruiz, A.; Araújo, Inês
    Nitric oxide (NO) has long been recognized as a multifaceted participant in brain physiology. Despite the knowledge that was gathered over many years regarding the contribution of NO to neuronal plasticity, for example the ability of the brain to change in response to new stimuli, only in recent years have we begun to understand how NO acts on the molecular and cellular level to orchestrate such important phenomena as synaptic plasticity (modification of the strength of existing synapses) or the formation of new synapses (synaptogenesis) and new neurons (neurogenesis). Post-translational modification of proteins by NO derivatives or reactive nitrogen species is a non-classical mechanism for signalling by NO. S-nitrosation is a reversible post-translational modification of thiol groups (mainly on cysteines) that may result in a change of function of the modified protein. S-nitrosation of key target proteins has emerged as a main regulatory mechanism by which NO can influence several levels of brain plasticity, which are reviewed in this work. Understanding how S-nitrosation contributes to neural plasticity can help us to better understand the physiology of these processes, and to better address pathological changes in plasticity that are involved in the pathophysiology of several neurological diseases. Linked ArticlesThis article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit
  • Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling
    Publication . Carreira, Bruno P.; Morte, Maria I.; Santos, Ana I.; Lourenco, Ana S.; Ambrosio, Antonio F.; Carvalho, Caetana M.; Araújo, Inês
    Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (lipopolysaccharide plus IFN-gamma), using a culture system of subventricular zone (SVZ)-derived NSCs mixed with microglia cells obtained from wild-type mice (iNOS(+/+)) or from iNOS knockout mice (iNOS(-/-)). We found an impairment of NSC cell proliferation in iNOS(+/+) mixed cultures, which was not observed in iNOS(-/-) mixed cultures. Furthermore, the increased release of NO by activated iNOS(+/+) microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite (ONOO-), or using the ONOO- degradation catalyst FeTMPyP cell proliferation and ERK signaling were restored to basal levels in iNOS(+/+) mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 mu M), for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the ERK/MAPK pathway.