Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 6 of 6
  • Source and impact of lead contamination on δ-aminolevulinic acid dehydratase activity in several marine bivalve species along the Gulf of Cadiz
    Publication . Company, Rui; Serafim, M.A.; Lopes, Belisandra; Cravo, Alexandra; Kalman, J.; Riba, I.; DelValls, T. A.; Blasco, J.; Delgado, J.; Sarmiento, A . M.; Nieto, J. M.; Shepherd, T. J.; Nowell, G.; Bebianno, Maria João
    Coastal areas and estuaries are particularly sensitive to metal contamination from anthropogenic sources and in the last few decades the study of space-time distribution and variation of metals has been extensively researched. The Gulf of Cadiz is no exception, with several rivers draining one of the largest concentrations of sulphide deposits in the world, the Iberian Pyrite Belt (IPB). Of these rivers, the Guadiana, one of the most important in the Iberian Peninsula, together with smaller rivers like the Tinto and Odiel, delivers a very high metal load to the adjacent coastal areas. The purpose of this work was to study the source and impact of lead (Pb) drained from historical or active mining areas in the IPB on the activity of a Pb inhibited enzyme (δ-aminolevulinic acid dehydratase, ALAD) in several bivalve species along the Gulf of Cadiz. Seven marine species (Chamelea gallina, Mactra corallina, Donax trunculus, Cerastoderma edule, Mytilus galloprovincialis, Scrobicularia plana and Crassostrea angulata) were collected at 12 sites from Mazagón, near the mouth of the rivers Tinto and Odiel (Spain), to Cacela Velha (Ria Formosa lagoon system, Portugal). Lead concentrations, ALAD activity and lead isotope ratios ((206)Pb/(204)Pb, (207)Pb/(204)Pb and (208)Pb/(204)Pb) were determined in the whole soft tissues. The highest Pb concentrations were determined in S. plana (3.50±1.09 μg g(-1) Pb d.w.) and D. trunculus (1.95±0.10 μg g(-1) Pb d.w.), while M. galloprovincialis and C. angulata showed the lowest Pb levels (<0.38 μg g(-1) Pb d.w.). In general, ALAD activity is negatively correlated with total Pb concentration. However this relationship is species dependent (e.g. linear for C. gallina ALAD=-0.36[Pb]+0.79; r=0.837; or exponential for M. galloprovincialis ALAD=2.48e(-8.3[Pb]); r=0.911). This indicates that ALAD activity has considerable potential as a biomarker of Pb and moreover, in marine bivalve species with different feeding habits. Lead isotope data showed significant seasonal and spatial changes in bivalve isotopic composition reflecting seasonal and geographic differences in bioaccumulation. Within the study area, Pb can be modelled as a mixing between geogenic Pb and mine-related, discharges of Pb from the IPB. For some sites at the mouth of the Guadiana River, the bivalves show contamination from other anthropogenic sources, such as leaded boat/aviation fuel and/or leaded paint. Finally, the study demonstrates convincingly the need to consider species-specific variation when using bivalve ALAD activity as a biomarker for Pb.
  • A multibiomarker approach in the clam Ruditapes decussatus to assess the impact of pollution in the Ria Formosa lagoon, South Coast of Portugal
    Publication . Cravo, Alexandra; Pereira, C.; Gomes, Tânia; Cardoso, Cátia; Serafim, M.A.; Almeida, Cheila; Rocha, T.; Lopes, Belisandra; Company, Rui; Medeiros, A.; Norberto, R.; Pereira, R.; Araújo, O.; Bebianno, Maria João
    The Ria Formosa lagoon is an ecosystem whose water quality reflects the anthropogenic influence upon the surrounding areas. In this lagoon, the clam Ruditapes decussatus has a great economical importance and has been widely used as a biomonitor. A multibiomarker approach (d-aminolevulinic acid dehy- dratase, metallothionein, lipid peroxidation, acetylcholinesterase, alkali-labile phosphates, DNA damage) was applied to assess the environmental quality of this ecosystem and the accumulation of contaminants and their potential adverse effects on clams. Clams were sampled in different shellfish beds in the period between July 2007 and December 2008 and abiotic parameters (temperature, salinity, pH and dissolved oxygen of seawater and organic matter in the sediment), condition index, metals (Cd, Cu, Zn, Ni, Pb), TBTs and PAHs concentrations were measured in clam tissues. Data was integrated using Principal Component Analyses and biomarker indices: IBR (Integrated Biomarker Response) and HSI (Health Status Index). This multibiomarker approach enabled discrimination of a time and space trend between sites with different degrees of anthropogenic contamination, identifying one of them (site 2) as the most stressful and summer months as the most critical period for clams due to an increase of environmental stress (anthropogenic pressure along with extreme environmental conditions, e.g. temperature, dissolved oxygen, organic matter in the sediments, etc). The selected biomarkers provided an integrated response to assess the environmental quality of the system, proving to be a useful approach when complex mixtures of contaminants occur.
  • A multibiomarker approach in Mytilus galloprovincialis to assess environmental quality
    Publication . Cravo, Alexandra; Lopes, Belisandra; Serafim, M.A.; Company, Rui; Barreira, Luísa; Gomes, Tânia; Bebianno, Maria João
    A multibiomarker approach was carried out for the first time in the South Portuguese Coast using Mytilus galloprovincialis, to assess environmental quality, establish if there are adverse biological responses associated to different sources of anthropogenic contamination and to determine spatial and seasonal trends. For this purpose the battery of biomarkers selected was: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx total and Se dependent), Cytochrome P450 component system, Glutathione-S-transferase (GST) and acetylcholinesterase (AChE), metallothionein (MT) and lead-delta-aminolevulinic acid dehydratase (ALAD), lipid peroxidation (LPO) and Condition Index (CI) along with the determination of PAHs and metals (Cd, Cu, Ni, Pb and Zn). Results show that despite the levels of both organic and metallic contaminants in these eight spots in the South Coast of Portugal not being particularly high compared with other contaminated/polluted sites worldwide, the selected battery of biomarkers responded efficiently to the environmental changes and allowed an environmental assessment between seasons and sites. Different spatial and seasonal responses were evident along the South Coast of Portugal, meaning that the contamination is not homogeneous. This does not only reflect different competition, origin and intensity of contamination, but also different environmental conditions (e.g. temperature, salinity). Along the South Portuguese Coast site 8 was the most contaminated, while site 2 was considered the least contaminated. Despite environmental factors possibly causing difficulties in the general interpretation of biomarker data, those that better responded to environmental contamination were CYP450, SOD-mit and T-GPx for the summation SigmaPAHs, MT (digestive gland) for metals (especially Cu), ALAD for Pb and LPO for both organic and metallic contamination. These biomarkers were also positively correlated with temperature in summer, revealing this as a more stressful/critical season. In future environmental contamination assessments there is no need to analyse the components b5, P418, NADH and NADPH of phase I MFO system, and MT in the gills, since their responses are not evident.
  • Evaluation of sediment toxicity in different Portuguese estuaries: ecological impact of metals and polycyclic aromatic hydrocarbons
    Publication . Serafim, M.A.; Company, Rui; Lopes, Belisandra; Pereira, Catarina; Cravo, Alexandra; Fonseca, V. F.; França, S.; Bebianno, Maria João; Cabral, H. N.
    Estuaries are exposed to multiple sources of different pollutants which tend to be trapped in sediments. Estuarine sediments can become reservoirs of contaminants that under certain circumstances may be released back to the water column, increasing their availability to the biota. Therefore, assessing sediment quality, of which toxicity testing is one of the lines-of-evidence, is a key element in ecological risk assessment strategies for these ecosystems. The use of Vibrio fischeri as luminescence bacteria is particularly effective in evaluating contaminated sediment. In this study, the ecotoxicity of sediments from five Portuguese estuaries (Aveiro, Tejo, Sado, Mira and Guadiana), was evaluated with a bioassay considering the 50% bioluminescence reduction of V. fischeri bacterium (EC50). Also, the levels of metals and polycyclic aromatic hydrocarbon contaminants (PAHs) were determined in the same sites. Moreover the Sediment Quality Guideline Quotient index (SQG-Q) was assessed for all sediments. The EC50 values varied significantly between estuaries but were strongly correlated with the metal concentrations in the different sites. In general Tejo estuary show higher toxicity levels compared to the other estuaries (5-min EC50 values of 5.6 mg mL(-1)). The integration of sediment contamination data shows that regarding the metallic contamination all sites are moderately impacted, with a higher SQG-Q in the Tejo estuary. On the other hand, when this index is applied to the PAHs levels, all sites are considered unimpacted. This suggests that metal contaminants are the most significant cause of toxicity in these sediments. Nevertheless, other factors can be relevant for this outcome due to the geochemical complexity of estuarine sediments (which affects contaminant speciation and bioavailability) and probably the presence of multiple xenobiotics in these sediments. (c) 2013 Elsevier Ltd. All rights reserved.
  • A multi-biomarker approach in cross-transplanted mussels Mytilus galloprovincialis
    Publication . Serafim, M.A.; Lopes, Belisandra; Company, Rui; Cravo, Alexandra; Gomes, Tânia; Serrão Sousa, Vânia; Bebianno, Maria João
    The present work integrates the active biomonitoring (ABM) concept in mussels Mytilus galloprovincialis from the South coast of Portugal transplanted during 28 days between two sites with different sources of contamination, and vice versa, in order to assess biological effects in these mussels. For that purpose a multibiomarker approach was used. The suit of biomarkers indicative of metal contamination were metallothioneins (MT) and the enzyme δ-aminolevulinic acid dehydratase (ALAD), for organic contamination mixed function oxidase system (MFO), glutathione-S-transferase (GST) and acetylcholinesterase (AChE), as oxidative stress biomarkers superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and lipid peroxidation (LPO). These biomarkers were used to determine an index to evaluate the stress levels in these two sites. Site A is strongly influenced by metallic contamination, with higher Cu, Cr and Pb in M. galloprovincialis, as well as higher MT levels, antioxidant enzymes activities and LPO concentrations, and lower ALAD activity. In site B organic compounds (PAHs) are prevalent and native mussels show higher activities of the MFO system components and GST. Transplanted mussels had significant alterations in some biomarkers that reflect the type of contaminants present in each site, which demonstrates the primary role of the environment in determining the physiological characteristics of resident mussels. Therefore the application of ABM using a battery of biomarkers turns out to be a useful approach in sites where usually complex mixtures of contaminants occurs. In this study the biomarkers that better differentiate the impact of different contaminants at each site were MT, CYP450, SOD and CAT.
  • Using biochemical and isotope geochemistry to understand the environmental and public health implications of lead pollution in the lower Guadiana River, Iberia: A freshwater bivalve study
    Publication . Company, Rui; Serafim, Angela; Lopes, Belisandra; Cravo, A.; Shepherd, T. J.; Pearson, G.; Bebianno, Maria João; Cravo, Alexandra
    Lead is a natural component of aquatic ecosystems with no known biological role and is highly toxic. Its toxicity stems from its ability to mimic biologically important metals and to produce membrane damage through lipid peroxidation (LPO). Most lead poisoning symptoms are thought to occur by interfering with an essential enzyme, delta-aminolevulinic acid dehydratase (ALAD), the activity of which is markedly inhibited by lead. The purpose of this work was to study the levels and effects of lead pollution (responses of ALAD and oxidative stress biomarker LPO) in the freshwater bivalve Corbicula fluminea along the lower Guadiana River (Portugal and Spain); a major river system impacted by historic mining pollution and more recent anthropogenic inputs. The results show that the enzymatic activity of ALAD is negatively correlated with the total Pb concentration of the whole tissue suggesting that ALAD has considerable potential as a biomarker of lead exposure in C. fluminea. To identify the sources of lead to which bivalves have been exposed, high precision (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)/Pb ratios for C. fluminea confirm that historical mining activities in the Iberian Pyrite Belt are the dominant source of lead pollution in the lower Guadiana River. The isotope patterns however exhibit marked seasonal and geographic variation in response to rainfall and river water management. Locally, other anthropogenic sources of lead have been detected in C. fluminea close to population centres, thus adding to its versatility as a freshwater bio-indicator. Overall, the study highlights the value of natural ecosystems as monitors of water quality and their importance for public health assessment and surveillance.