Repository logo
 
Loading...
Profile Picture
Person

Horta Jung, Marília

Search Results

Now showing 1 - 2 of 2
  • In vitro and in vivo quantification of elicitin expression in Phytophthora cinnamomi
    Publication . Horta, Marília; Sousa, Nelson; Coelho, A. C.; Neves, D.; Cravador, A.
    The differential expression of four Phytophthora cinnamomi elicitin genes was analysed by Real Time RT-PCR. In in vitro cultures, the a-cinnamomin gene showed the highest level of expression, the b-cinnamomin gene (b-cin) was the most inducible, and the HAE transcripts were in low abundance. Transcription of all the elicitins was active during the active growth of the pathogen when infecting cork oak (Quercus suber) roots, and as host colonization progressed, the level of b-cin expression fell, while that of a-cin rose. In an antisense transgenic strain, the silencing of b-cin also negatively affected the expression of other elicitin genes in the cluster. The reduced in planta growth of the b-cin knock-out is related to the altered pattern of elicitin gene expression, supporting the idea that one of the functions of elicitins is related, directly or indirectly, with pathogenesis.
  • Involvement of a cinnamyl alcohol dehydrogenase of Quercus suber in the defence response to infection by Phytophthora cinnamomi
    Publication . Coelho, A. C.; Horta, Marília; Neves, D.; Cravador, A.
    A gene encoding a potential NADPH-dependent cinnamyl alcohol dehydrogenase (QsCAD1) (GenBank accession no: AY362455) was identified in Quercus suber (cork oak). Its complete cDNA sequence was obtained by RACE-PCR, starting from total RNA extracted from roots of seedlings of Q. suber, infected with Phytophthora cinnamomi, the causal agent of the decline and sudden death of Q. suber and Quercus ilex subsp. rotundifolia in the Iberian Peninsula. Sequence information to perform the RACE-PCR was acquired from a polymorphic fragment (C9), specifically identified by cDNA-AFLP, in leaves of epicormic shoots of a cork oak tree that suffered sudden death. RT-PCR and hybridization analysis showed that the QsCAD1 gene is up-regulated in root seedlings of Q. suber infected with P. cinnamomi. QsCAD1 has a high structural homology with VR-ERE (Vigna radiata), an enzyme that detoxifies eutypine (produced by Eutypa lata, the causal agent of eutypa dieback of grapevines), to eutypinol, and with QrCAD1 (Q. ilex subsp. rotundifolia), EgCAD1 (Eucalyptus gunnii), MdCAD1 (Malus x domestica). Taken together, these results suggest that these enzymes, and namely QsCAD1 belong to a new group of CAD potentially involved in deactivation of toxins produced by phytopathogens.