Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Variations of the Shifting Lemma and Goursat categories
    Publication . Gran, Marino; Rodelo, Diana; Nguefeu, Idriss Tchoffo
    We prove that Mal'tsev and Goursat categories may be characterized through variations of the Shifting Lemma, that is classically expressed in terms of three congruences R, S and T, and characterizes congruence modular varieties. We first show that a regular category C is a Mal'tsev category if and only if the Shifting Lemma holds for reflexive relations on the same object in C. Moreover, we prove that a regular category C is a Goursat category if and only if the Shifting Lemma holds for a reflexive relation S and reflexive and positive relations R and T in C. In particular this provides a new characterization of 2-permutable and 3-permutable varieties and quasi-varieties of universal algebras.
  • 3 x 3 lemma for star-exact sequences
    Publication . Gran, Marino; Janelidze, Zurab; Rodelo, Diana
    A regular category is said to be normal when it is pointed and every regular epimorphism in it is a normal epimorphism. Any abelian category is normal, and in a normal category one can define short exact sequences in a similar way as in an abelian category. Then, the corresponding 3 x 3 lemma is equivalent to the so-called subtractivity, which in universal algebra is also known as congruence 0-permutability. In the context of non-pointed regular categories, short exact sequences can be replaced with "exact forks" and then, the corresponding 3 x 3 lemma is equivalent, in the universal algebraic terminology, to congruence 3-permutability; equivalently, regular categories satisfying such 3 x 3 lemma are precisely the Goursat categories. We show how these two seemingly independent results can be unified in the context of star-regular categories recently introduced in a joint work of A. Ursini and the first two authors.