Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Barrier island resilience assessment: Applying the ecological principles to geomorphological dataPublication . Kombiadou, Katerina; Matias, Ana; Costas, Susana; Carrasco, A. Rita; Plomaritis, Theocharis A.; Ferreira, ÓscarApplying the ecological resilience principles to barrier island geomorphological evolution requires approaches that perceive and interpret resilience far from predefined barrier characteristics and static views. Accepting that barrier islands, like all natural systems, are dynamic and adaptively changing in response to external disturbances is fundamental to the formulated approach. To this aim, geomorphological units and dimensions were used to describe barrier island stability landscape as an actively shifting ‘topography’, reshaping in response to exogenous events and in relation to intrinsic properties. The structure of the subaerial barrier was characterised using the environmental units of Beach, Dune and Marsh (or BDM), where different combinations of BDM structure define distinct barrier stable states, under a simplified framework that is applicable over a wide range of barrier structures. The methodology is based on reconstructing resilience trajectories of barrier islands through identifying the distinct BDM states and related shifts (thresholds crossed) and assessing resilience dimensions (latitude, resistance and precariousness defined as barrier width and height and proximity to mainland, respectively) that, jointly, define the shape of the stability domain. The approach was applied to the Ria Formosa barrier island system (S. Portugal), using multi-decadal geomorphological data and gradually decreasing spatial discretisation, passing from individual barrier transects to sectors and to entire barriers. The joint evolution of two inland-migrating barriers (Cabanas Island and Cacela Peninsula) was used as an exemplar of adaptive capacity in barrier geomorphic change and, therefore, of resilient response to external pressures. Resilience pathways showed that the Ria Formosa barriers have been resilient over the studied timeframe, with a tendency for maintaining or increasing BDM structural complexity. In general, the stability domain tends to shift from low latitude and high resistance forms (narrow-deep basins of attraction) in the west part of the barrier chain, to higher latitudes and lower resistance ones (wide-shallow basins) towards the east. Precariousness peaks near the edges of the system (low lagoon width) and minimises towards the central part (most detached barriers). Scaling issues regarding smoothing of longshore variability and potential consequences on masking thresholds and critical dimensions are highlighted and discussed, along with the key role of the meaning of specified resilience (of what?) in the assessment. The methodology is a novel approach, easily transferable to different systems and spatiotemporal scales of analysis, representing a step forward in interpreting and assessing barrier island resilience.
- Impacts of human interventions on the evolution of the Ria Formosa barrier island system (S. Portugal)Publication . Kombiadou, Katerina; Matias, Ana; Ferreira, Oscar; Carrasco, A. Rita; Costas, Susana; Plomaritis, TheocharisHuman interventions on sandy barriers disturb natural barrier dynamics, to the extent of having become key forces in modifying geomorphological evolution. This work identifies natural and human-induced drivers and analyses their importance to the multi-decadal evolution of the Ria Formosa barrier island system, in South Portugal. Aerial photographs from the last six decades and historical maps are used to assess changes in cross-shore rates, morphological characteristics (barrier and dune widths, inlet morphology and migration) and barrier areas, through systematic methods that can be easily transferred to other barrier systems. Interventions, and especially hard engineering ones (jetties, inlet stabilisations), affected barrier evolution trends. Shore-perpendicular works increased shoreline progradation updrift and initiated coastal retreat downdrift, with strongest erosive impacts along the edges of the system. Inlet stabilisations changed tidal inlet hydrodynamics and initiated ebb-shoal attachment to the barriers on either side of a non-migrating inlet that experienced loss of tidal prism. This shoal attachment was the main factor for the increase in total barrier area of Ria Formosa during the 60 years of analysis. Barrier growth after 2005 was slower, which could indicate that the system is reaching morphodynamic stability.
- Bridging the gap between resilience and geomorphology of complex coastal systemsPublication . Kombiadou, Katerina; Costas, Susana; Carrasco, A. Rita; Plomaritis, Theocharis; Ferreira, Oscar; Matias, AnaResilience has been used over a wide range of scientific fields and often ambiguously, causing confusion over terminology and concepts and giving rise to distinct interpretations and misconceptions, even within the same scientific discipline. Starting by providing clarifications and definitions of the main terminology and key principles of ecological resilience theory, we pass on to expressing them through geomorphic dimensions of barrier islands. Three distinct environments (beach, dune, marsh) are proposed as the panarchical levels of analysis, along with potential feedbacks between them and geomorphic dimensions that can express the changes of the stability landscape. Morphological changes induced by storms and subsequent recovery are transferred to stability landscapes, over a range of storm impacts and recovery. We postulate that postperturbation recovery should not be restricted to regaining pre-disturbance barrier dimensions, but should be viewed in terms of reorganisation and adaptation, accounting for maintaining the existence of functions, or the ability of the system to regain them. The proposed scheme and dimensions are tested using geomorphological data from barrier response to distinct disturbances, over different temporal scales that range from event to multi-decadal ones. The case of a barrier island migrating landwards is conceptualised in terms of alternative states and thresholds arising during the process and related phases and changes to the adaptive cycle. The methodology and approach presented is a step towards more holistic views of geomorphic systems’ resilience that we hope will contribute to furthering interdisciplinary understanding and cooperation in the area of sustainability and resilience of natural systems.
- The birth of backbarrier marshes in Culatra Island (Ria Formosa, South Portugal)Publication . Kompiadou, Aikaterini; Carrasco, Rita; Costas, Susana; Ramires, Margarida; Matias, AnaThe rapid elongation of Culatra Island, a sandy barrier in the Ria Formosa chain (S. Portugal), since the mid1940s led to the formation of three new embayments in its backbarrier that were gradually colonised by halophytic vegetation. This provided a rare opportunity to collect information and data on the very early stages of backbarrier marsh plant establishment and evolution. Sediment (surface and subsurface) sampling in two of the recently formed bays, combined with information extracted from vertical aerial photographs, allowed us to assess modern sedimentation characteristics and vertical accretion rates since the shift from a bare sandflat to a vegetated marsh platform. Present-day topography appears largely inherited by overwash or/and inlet-related tidal deposits that provided the necessary sediment pulse for the formation of an intertidal sandy substrate, suitable for colonisation. The variability in accretion rates, noted even within the same embayment, as well as the differences in accretion balance with similarly young backbarrier marshes, highlight the importance of local conditions (sediment import, distance to creeks and marsh edge, storm frequency and intensity) to marsh buildup, even during the very early stages. Variable accretion rates were also identified over intertidal seagrass patches, indicating similar influences. Organic deposition rates were very low in all vegetated intertidal habitats, indicating the dominance of mineral deposition to the vertical growth. A lag, ranging from roughly 10-30 years, was observed between the formation of the intertidal sandy platform and plant establishment in all embayments. The different timescales in the observed lag are likely linked to differences in hydrodynamic conditions, promoted by the embayment morphology (opening width). The lowest lag was observed in protected embayments, which could reflect a 'typical' delay for plant establishment in the system, while the highest lag was associated with higher energy backbarrier environments.