Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • Effects of nutrient and light enrichment on phytoplankton growth
    Publication . Domingues, Rita B.; Barbosa, Ana B.
    Alterations of freshwater flow regimes and increasing eutrophication lead to alterations in light availability and nutrient loading into adjacent estuaries and coastal areas. Phytoplankton community respond to these changes in many ways. Harmful phytoplankton blooms, for instance, may be a consequence of changes in nutrient supply, as well as the replacement of some phytoplankton species (like diatoms, that contribute for the development of large fish and shellfish populations) by ohers (like cyanobacteria, that may be toxic and represent an undesirable food source for higher trophic levels). Nutrient and light enrichment experiments allow us to understand and predict the effects of eutrophication on the growth of phytoplankton. This is a fundamental tool in water management issues, since it enables the prediction of changes in the phytoplankton community that may be harmful to the whole ecosystem, and the design of mitigation strategies (Zalewski 2000).
  • Cyanobacteria blooms in natural waters in Southern Portugal: a water management perspective
    Publication . Galvão, Helena M.; Reis, Margarida P.; Valério, Elisabete; Domingues, Rita; Costa, Cristina; Lourenço, Dulce; Condinho, S.; Miguel, Rute; Barbosa, Ana B.; Gago, Conceição; Faria, Natália; Paulino, Sérgio; Pereira, Paulo
    This synthesis of 3 studies from 2 regions of southern Portugal (Alentejo and Algarve) was part of a workshop focusing on cyanobacteria held at the SAME 10. The first study monitored impacts of the large Alqueva dam on the Guadiana estuary since 1996, revealing changes in sediment load, nutrient regime and phytoplankton succession. Prior to dam construction, dense cyanobacterial blooms occurred in the upper estuary during summer and fall. After dam construction, chlorophyll concentration, phytoplankton diversity and abundances of cyanobacteria decreased, contrary to predictions. Mycrocystins remained at low levels in the seston and undetectable in water samples, except during summer 2003 when the particulate fraction contained 1 μg l–1, while chlorophyll concentrations and abundances of potentially toxic cyanobacteria remained low. Algarve reservoirs studied since 2001 revealed differences in phytoplankton dynamics. In the western mesotrophic reservoirs (Bravura and Funcho), 40 to 50% of surface samples contained cyanobacterial concentrations of ≥2000 cells ml–1, while over 80% of samples from the eastern oligotrophic reservoirs (Odeleite and Beliche) exceeded this value. Spring blooms were dominated by Oscillatoriales in Odeleite and Beliche and by Chroococcales in Bravura and Funcho. Bloom composition seemed to depend on water temperature and management strategies, while toxin concentrations reflected the increased biomass of toxic species. Finally, phytoplankton communities and microcystin production in 5 Alentejo freshwater reservoirs were studied from May to December 2005 and April to July 2006. Cyanobacterial blooms occurred, with varying intensities, not only during summer but also occasionally in winter. Microcystins were detected in 23% of the samples (n = 51), but without correlation with cyanobacterial biomass. Although Microcystis aeruginosa seemed to be the major producer of microcystins, other potentially toxic species were found. In summary, the varying pattern of cyanobacterial bloom occurrence and toxicity requires a systematic approach to monitoring programs for adequate risk assessment.
  • Nutrients, light and phytoplankton succession in a temperate estuary (the Guadiana, south-western Iberia)
    Publication . Domingues, Rita B.; Barbosa, Ana B.; Galvão, Helena M.
    Seasonal changes in freshwater flow, leading to alteration of the nutritional environment and hence affecting phytoplankton composition, will probably be enhanced in the Guadiana estuary (SW Iberia) by the recently built Alqueva dam. The main goal of this study is to assess the relationship between dissolved inorganic macronutrient concentrations and ratios, light availability and phytoplankton succession in the upper estuary of the Guadiana River prior to the completion of the dam. From April to October 2001 three locations along the upper estuary were sampled fortnightly. Several physical and chemical parameters were analysed and phytoplankton composition, abundance and biomass were determined through inverted and epifluorescence microscopy. Phytoplankton showed a uni-modal cycle with a biomass maximum during spring. A relationship between phytoplankton succession and nutrient ratios seemed to exist. In early spring, N:P was high, Si was abundant and a diatom bloom occurred. This bloom collapsed and an increase in green algae abundance was observed later in spring, with low Si and high N:P. In the summer, N:P and Si were low, and a cyanobacteria bloom developed. This bloom included the potentially toxic Microcystis. Light was probably limiting throughout the sampling period, particularly to non-motile cells. Enhancement of cyanobacteria blooms can be expected, and as the river water is used by local human populations, continued monitoring of the Guadiana estuary will be necessary to evaluate the effects of the Alqueva dam construction on phytoplankton dynamics.
  • Grazing impact of microzooplankton upon phytoplankton
    Publication . Barbosa, Ana B.; Domingues, Rita B.
    Alterations of freshwater flow regimes and increasing eutrophication can lead to alterations in phytoplankton biomass, composition, and growth in estuaries and adjacent coastal waters. Since phytoplankton is the first trophic level of most aquatic foodwebs, these changes can be propagated to other biological compartments, eventually impacting water quality and ecosystem services. However, phytoplankton responses to environmental changes in abiotic variables (e.g., light, nutrients) are additionally controlled by mortality or removal processes (e.g., grazing, horizontal advection and viral lysis). Grazing exerted by microzooplankton, usually dominated by phagotrophic protists, is considered the most relevant phytoplankton mortality factor in most aquatic systems (see Calbet, Landry 2004). In fact, grazing impact of microzooplankton can prevent phytoplankton accumulation in marine systems despite an overall increase in phytoplankton replication rate. By consequence, microzooplankton grazing may minimize problems associated to increased eutrophication and, ultimately, prevent the occurrence of harmful phytoplankton blooms. Thus, microzooplankton grazing on phytoplankton constitutes a key biological process required to understand and predict relationships between hydrological and biological processes in aquatic ecosystems and to use ecosystem properties to improve water quality and enhance ecosystem services, general principles of the Ecohydrology Concept (Zalewski 2000).
  • Constrains on the use of phytoplankton as a biological quality indicator within the Water Framework Directive in portuguese waters
    Publication . Domingues, Rita B.; Barbosa, Ana B.; Galvão, Helena M.
    The European Union Water Framework Directive (WFD), a new regulation aiming to achieve and maintain a clean and well-managed water environment, refers to phy­toplank­ton as one of the biological quality elements that should be regularly monitored, and upon which the reference conditions of water quality should be established. However, the use of phy­toplank­ton as a biological quality element will result in several constraints, which are analyzed in this article with examples from Portuguese waters. Specifically, the establishment of reference conditions of water quality may be dif­fi­cult in some water bodies for which no historical data exists. The sampling frequency proposed for phy­toplank­ton monitoring does not seem suitable to assess phy­toplank­ton succession, and may preclude the detection of algal blooms. Finally, the use of chlorophyll a as a proxy of phy­toplank­ton biomass and abundance has been proposed by some authors, but it may overlook blooms of pico- and small nanophytoplank­ton, and overestimate the importance of large microphytoplank­ton. Furthermore, most studies in Portugal have used only inverted microscopy for phy­toplank­ton observation and quantification; this method does not permit the distinction between autotrophic and heterotrophic cells, especially in samples preserved with Lugol’s solution, and does not allow the observation of smaller-sized cells. Finally, some techniques, such as remote sensing and chemotaxonomic analy­sis, are proposed to be used as supplements in phy­toplank­ton monitoring programs.