Repository logo
 

Search Results

Now showing 1 - 10 of 14
  • Generating asymmetries in the early vertebrate embryo: the role of the Cerberus-like family
    Publication . Belo, José A.; Silva, Ana C.; Borges, Ana; Filipe, Mário; Bento, Margaret; Gonçalves, Lisa; Vitorino, Marta; Salgueiro, Ana Marisa; Texeira, Vera; Tavares, Ana T.; Marques, Sara
    One fundamental aspect of vertebrate embryonic development is the formation of the body plan. For this process, asymmetries have to be generated during early stages of development along the three main body axes: Anterior-Posterior, Dorso-Ventral and Left-Right. We have been studying the role of a novel class of molecules,the Cerberus/Dan gene family. These are dedicated secreted antagonists of three major signaling pathways: Nodal, BMP and Wnt. Our studies contribute to the current view that the fine tuning of signaling is controlled by a set of inhibitory molecules rather than by activators. In this context, the Cerberus-like molecules emerge as key players in the regulation and generation of asymmetries in the early vertebrate embryo.
  • Reversal of left-right asymmetry induced by aberrant nodal signaling in the node of mouse embryos
    Publication . Oki, Shinya; Kitajima, Keiko; Marques, Sara; Belo, José A.; Yokoyama, Takahiko; Hamada, Hiroshi; Meno, Chikara
    The node at the anterior tip of the primitive streak serves as an initial generator of the left-right (L-R) axis in mammalian embryos. We now show that a small disturbance in molecular signaling at the node is responsible for the L-R reversal of visceral organs in the inv mutant mouse. In the node of wild-type embryos, the expression of Nodal and Cerl2 (Dand5), which encodes an inhibitor of Nodal, is asymmetric, with the level of Nodal expression being higher on the left side and that of Cerl2 expression higher on the right. In inv/inv embryos, however, a localized reduction in the level of Cerl2 expression results in upregulation of the Nodal signal and a consequent induction of Lefty expression in the node. The ectopic expression of Lefty1 delays the onset of Nodal expression in the lateral plate mesoderm. L-R asymmetry of Cerl2 expression in the node also becomes reversed in a manner dependent on the Nodal signal. Nodal expression in the lateral plate mesoderm then appears on the right side, probably reflecting the balance between Nodal and Cerl2 in the node. The inhibition of Cerl2 expression by the Nodal signal suggests a mechanism for amplification of the cue for L-R asymmetry provided by nodal flow and for stabilization of asymmetric gene expression around the node. In inv/inv embryos, this system may function in reverse as a result of ectopic production of Lefty, which inhibits the Nodal signal on the left side in a manner dependent on leftward nodal flow.
  • The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis
    Publication . Marques, Sara; Borges, Ana; Silva, Ana Cristina; Freitas, Sandra; Cordenonsi, M.; Belo, José A.
    Correct establishment of the left/right (L/R) body asymmetry in the mouse embryo requires asymmetric activation of the evolutionarily conserved Nodal signaling cascade in the left lateral plate mesoderm (L-LPM). Furthermore, the presence of Nodal in the node is essential for its own expression in the L-LPM. Here, we have characterized the function of cerl-2, a novel Nodal antagonist, which displays a unique asymmetric expression on the right side of the mouse node. cerl-2 knockout mice display multiple laterality defects including randomization of the L/R axis. These defects can be partially rescued by removing one nodal allele. Our results demonstrate that Cerl-2 plays a key role in restricting the Nodal signaling pathway toward the left side of the mouse embryo by preventing its activity in the right side.
  • Endogenous Cerberus activity is required for anterior head specification in Xenopus
    Publication . Silva, Ana Cristina; Filipe, Mário; Kuerner, Klaus-Michael; Steinbeisser, Herbert; Belo, José A.
    We analyzed the endogenous requirement for Cerberus in Xenopus head development. 'Knockdown' of Cerberus function by antisense morpholino oligonucleotides did not impair head formation in the embryo. In contrast, targeted increase of BMP, Nodal and Wnt signaling in the anterior dorsal-endoderm (ADE) resulted in synergistic loss of anterior head structures, without affecting more posterior axial ones. Remarkably, those head phenotypes were aggravated by simultaneous depletion of Cerberus. These experiments demonstrated for the first time that endogenous Cerberus protein can inhibit BMP, Nodal and Wnt factors in vivo. Conjugates of dorsal ectoderm (DE) and ADE explants in which Cerberus function was 'knocked down' revealed the requirement of Cerberus in the ADE for the proper induction of anterior neural markers and repression of more posterior ones. This data supports the view that Cerberus function is required in the leading edge of the ADE for correct induction and patterning of the neuroectoderm.
  • N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase expression during early mouse embryonic development
    Publication . Salgueiro, Ana Marisa; Filipe, Mario; Belo, José A.
    N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) is an enzyme which is known to help build up the GlcA beta 1-3GalNAc(4,6-bisSO(4)) unit of chondroitin sulfate E (CSE). This enzymatic activity has been reported in squid cartilage and in human serum, but has never been reported as an enzyme required during early mouse development. On the other hand, CSE has been shown to bind with strong affinity to Midkine (MK). The latter is a heparin-binding growth factor which has been found to play important regulatory roles in differentiation and morphogenesis during mouse embryonic development. We have analyzed the expression pattern of the GalNAc4S-6ST gene during early mouse embryonic development by whole mount in situ hybridization. The results show that GalNAc4S-6ST is differentially expressed in the anterior visceral ectoderm at stage E5.5 and later becomes restricted to the embryonic endoderm, especially in the prospective midgut region. During the turning process, expression of GalNAc4S-6ST gene is detected in the forebrain, branchial arches, across the gut tube (hindgut, midgut and foregut diverticulum), in the vitelline veins and artery and in the splanchnopleure layer. These results open the possibility of a role for GalNAc4S-6ST during early mouse development.
  • Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm
    Publication . Kimura-Yoshida, C.; Nakano, H.; Okamura, D.; Nakao, K.; Yonemura, S.; A. Belo, José; Aizawa, S.; Matsui, Y.; Matsuo, I.
    The mouse embryonic axis is initially formed with a proximal-distal orientation followed by subsequent conversion to a prospective anterior-posterior (A-P) polarity with directional migration of visceral endoderm cells. Importantly, Otx2, a homeobox gene, is essential to this developmental process. However, the genetic regulatory mechanism governing axis conversion is poorly understood. Here, defective axis conversion due to Otx2 deficiency can be rescued by expression of Dkk1, a Wnt antagonist, or following removal of one copy of the beta-catenin gene. Misexpression of a canonical Wnt ligand can also inhibit correct A-P axis rotation. Moreover, asymmetrical distribution of beta-catenin localization is impaired in the Otx2-deficient and Wnt- misexpressing visceral endoderm. Concurrently, canonical Wnt and Dkk1 function as repulsive and attractive guidance cues, respectively, in the migration of visceral endoderm cells. We propose that Wnt/beta-catenin signaling mediates A-P axis polarization by guiding cell migration toward the prospective anterior in the pregastrula mouse embryo.
  • Comparative expression of mouse and chicken shisa homologues during early development
    Publication . Filipe, Mario; Gonçalves Dias da Silva, Lisa; Bento, Margaret; Silva, Ana Cristina; Belo, José A.
    During vertebrate embryogenesis, fibroblast growth factor (FGF) and Wnt signaling have been implicated in diverse cellular processes, including cell growth, differentiation, and tissue patterning. The recently identified Xenopus Shisa protein promotes head formation by inhibiting Wnt and FGF signaling through its interaction with the immature forms of Frizzled and FGF receptors in the endoplasmic reticulum, which prevents their posttranslational maturation. Here, we describe the mouse and chicken homologues of Xenopus Shisa. The mouse and chicken Shisa proteins share, respectively, 33.6% and 33.8% identity with the Xenopus homolog. In situ hybridization analysis shows that mouse shisa is expressed throughout embryonic development, predominantly in the anterior visceral endoderm, headfolds, somites, forebrain, optic vesicle, and limb buds. Cross-species comparison shows that the expression pattern of cshisa closely mirrors that of mshisa. Our observations indicate that the Shisa family genes are typically expressed in tissues known to require the modulation of Wnt and FGF signaling. Developmental Dynamics 235:2567-2573, 2006. (c) 2006 Wiley-Liss, Inc.
  • The anterior-posterior axis emerges respecting the morphology of the mouse embryo that changes and aligns with the uterus before gastrulation
    Publication . Mesnard, D; Filipe, M; Belo, José A.; Zernicka-Goetz, M
    Background: When the anterior-posterior axis of the mouse embryo becomes explicit at gastrulation, it is almost perpendicular to the long uterine axis. This led to the belief that the uterus could play a key role in positioning this future body axis. Results: Here, we demonstrate that when the anterior-posterior axis first emerges it does not respect the axes of the uterus but, rather, the morphology of the embryo. Unexpectedly, the emerging anterior-posterior axis is initially aligned not with the long, but the short axis of the embryo. Then whether the embryo develops in vitro or in utero, the anterior-posterior axis becomes aligned with the long axis of embryo just prior to gastrulation. Of three mechanisms that could account for this apparent shift in anterior-posterior axis orientation-cell migration, spatial change of gene expression, or change in embryo shape-lineage tracing studies favor a shape change accompanied by restriction of the expression domain of anterior markers. This property of the embryo must be modulated by interactions with the uterus as ultimately the anterior-posterior and long axes of the embryo align with the left-right uterine axis. Conclusions: The emerging anterior-posterior axis relates to embryo morphology rather than that of the uterus. The apparent shift in its orientation to align with the long embryonic axis and with the uterus is associated with a change in embryo shape and a refinement of anterior gene expression pattern. This suggests an interdependence between anterior-posterior gene expression, the shape of the embryo, and the uterus.
  • Cerberus is a feedback inhibitor of Nodal asymmetric signaling in the chick embryo
    Publication . Tavares, Ana Teresa; Andrade, Sofia; Silva, Ana Cristina; Belo, José A.
    The TGF-beta-related molecule Nodal plays an essential and conserved role in left-right patterning of the vertebrate embryo. Previous reports have shown that the zebrafish and mouse Cerberus-related proteins Charon and Cerberus-like-2 (Cerl-2), respectively, act in the node region to prevent the Nodal signal from crossing to the right side, whereas chick Cerberus (cCer) has an unclear function in the left-side mesoderm. In this study, we investigate the transcriptional regulation and function of cCer in left-right development. By analyzing the enhancer activity of cCer 5' genomic sequences in electroporated chick embryos, we identified a cCer left-side enhancer that contains two FoxH1 and one SMAD binding site. We show that these Nodal-responsive elements are necessary and sufficient for the activation of transcription in the left-side mesoderm. In transgenic mouse embryos, cCer regulatory sequences behave as in chick embryos, suggesting that the cis-regulatory sequences of Cerberus-related genes have diverged during vertebrate evolution. Moreover, our findings from cCer overexpression and knockdown experiments indicate that cCer is a negative-feedback regulator of Nodal asymmetric signaling. We propose that cCer and mouse Cerl-2 have evolved distinct regulatory mechanisms but retained a conserved function in left-right development, which is to restrict Nodal activity to the left side of the embryo.