Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- Probing cellulose amphiphilicityPublication . Medronho, B.; Duarte, H.; Alves, L.; Antunes, F.; Romano, Anabela; Lindman, B.Cellulose dissolution and regeneration is an increasingly active research field due to the direct relevance for numerous production processes and applications. The problem is not trivial since cellulose solvents are of remarkably different nature and thus the understanding of the subtle balance between the different interactions involved becomes difficult but crucial. There is a current discussion in literature on the balance between hydrogen bonding and hydrophobic interactions in controlling the solution behavior of cellulose. This treatise attempts to review recent work highlighting the marked amphiphilic characteristics of cellulose and role of hydrophobic interactions in dissolution and regeneration. Additionally, a few examples of our own research are discussed focusing on the role of different additives in cellulose solubility. The data does support the amphiphilic behavior of cellulose, which clearly should not be neglected when developing new solvents and strategies for cellulose dissolution and regeneration.
- Cellulose dissolution in an alkali based solvent: influence of additives and pretreatmentsPublication . Kihlman, Martin; Medronho, B.; Romano, Anabela; Germgard, Ulf; Lindman, B.The distinction between thermodynamic and kinetics in cellulose dissolution is seldom considered in the literature. Therefore, herein an attempt to discuss this topic and illustrate our hypotheses on the basis of simple experiments was made. It is well-known that cellulose can be dissolved in a aqueous sodium hydroxide (NaOH/H2O) solvent at low temperature but it is here shown that such an alkaline solvent can be considerably improved regarding solubility, stability and rheological properties as a whole if different additives (salts and amphiphilic molecules) are used in the dissolution stage. This work probes new aqueous routes to dissolve cellulose, thereby improving the potential to commercially dissolve cellulose in an inexpensive and environmentally friendly manner.
- Silk fibroin dissolution in Tetrabutylammonium hydroxide aqueous solutionPublication . Medronho, Bruno; Filipe, Alexandra; Napso, Sofia; Khalfin, Rafail. L.; Pereira, Rui F. P.; Bermudez, Vermica de Zea; Romano, Anabela; Cohen, YachinBombyx mori L. silk fibroin (SF) is widely used in different areas due to its ability to form durable and resilient materials with notable mechanical properties. However, in some of these applications the dissolution of SF is required, and this is not often straightforward due to its inability to be dissolved in the majority of common solvents. This work reports a novel approach to dissolve SF using 40 wt % aqueous tetrabutylammonium hydroxide, TBAOH(aq), at mild temperature. A thorough rheological study combined with small-angle X-ray scattering is presented to correlate the SF state in solution with changes in the rheological parameters. The scattering data suggest that the SF conformation in TBAOH(aq) is close to a random coil, possibly having some compact domains linked with flexible random chains. The radius of gyration (R-g) and the molecular weight (M-w) were estimated to be ca. 17.5 nm and 450 kDa, respectively, which are in good agreement with previous works. Nevertheless, a lower M-w value was deduced from rheometry (i.e., 321 kDa) demonstrating a low degree of depolymerization during dissolution in comparison to other harsh processes. The transition from a dilute to a semidilute regime coincides with the estimated critical concentration and is marked by the presence of a shear-thinning behavior in the flow curves, violation of the empirical Cox-Merz rule, and an upward increase in the activation energy. This work paves the way toward the development of advanced high-tech SF-based materials.
- Probing cellulose–solvent interactions with self-diffusion NMR: Onium hydroxide concentration and co-solvent effectsPublication . Medronho, Bruno; Pereira, Ana; Duarte, Hugo; Gentile, L.; Rosa Da Costa, Ana; Romano, A; Olsson, U.The molecular self-diffusion coefficients were accessed, for the first time, in solutions of microcrystalline cel-lulose, dissolved in 30 wt% and 55 wt% aqueous tetrabutylammonium hydroxide, TBAH (aq), and in mixtures of 40 wt% TBAH (aq) with an organic co-solvent, dimethylsulfoxide (DMSO), through pulsed field gradient stim-ulated echo NMR measurements. A two-state model was applied to estimate alpha (i.e., average number of ions that "bind" to each anhydroglucose unit) and Pb (i.e., fraction of "bound" molecules of DMSO, TBAH or H2O to cellulose) parameters. The alpha values suggest that TBA+ ions can bind to cellulose within 0.5 TBA+ to 2.3 TBA+/ AGU. On the other hand, the Pb parameter increases when raising cellulose concentration for TBA+, DMSO and water in all solvent systems. Data suggests that TBAH interacts with the ionized OH groups from cellulose forming a sheath of bulky TBA+ counterions which consequently leads to steric hindrance between cellulose chains.
- Revisiting the dissolution of cellulose in H3PO4(aq) through cryo-TEM PTssNMR and DWSPublication . Alves, Luis; Medronho, Bruno; Filipe, Alexandra; Romano, Anabela; Rasteiro, Maria G.; Lindman, Bjorn; Topgaard, Daniel; Davidovich, Irina; Talmon, YeshayahuCellulose can be dissolved in concentrated acidic aqueous solvents forming extremely viscous solutions, and, in some cases, liquid crystalline phases. In this work, the concentrated phosphoric acid aqueous solvent is revisited implementing a set of advanced techniques, such as cryo-transmission electronic microscopy (cryo-TEM), polarization transfer solid-state nuclear magnetic resonance (PTssNMR), and diffusing wave spectroscopy (DWS). Cryo-TEM images confirm that this solvent system is capable to efficiently dissolve cellulose. No cellulose particles, fibrils, or aggregates are visible. Conversely, PTssNMR revealed a dominant CP signal at 25 degrees C, characteristic of C-H bond reorientation with correlation time longer than 100 ns and/or order parameter above 0.5, which was ascribed to a transient gel-like network or an anisotropic liquid crystalline phase. Increasing the temperature leads to a gradual transition from CP to INEPT-dominant signal and a loss of birefringence in optical microscopy, suggesting an anisotropic-to-isotropic phase transition. Finally, an excellent agreement between optical microrheology and conventional mechanical rheometry was also obtained.