Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 5 of 5
  • Identification of new targets of S-nitrosylation in neural stem cells by thiol redox proteomics
    Publication . Santos, Ana Isabel; Lourenco, Ana S.; Simão, Sónia; Marques-da-Silva, Dorinda; Santos, Daniela F.; Carvalho, Ana Paula Onofre de; Pereira, Ana Catarina; Izquierdo-Álvarez, Alicia; Ramos, Elena; Morato, Esperanza; Marina, Anabel; Martínez-Ruiz, Antonio; Araújo, Inês
    Nitric oxide (NO) is well established as a regulator of neurogenesis. NO increases the proliferation of neural stem cells (NSC), and is essential for hippocampal injury-induced neurogenesis following an excitotoxic lesion. One of the mechanisms underlying non-classical NO cell signaling is protein S-nitrosylation. This post-translational modification consists in the formation of a nitrosothiol group (R-SNO) in cysteine residues, which can promote formation of other oxidative modifications in those cysteine residues. S-nitrosylation can regulate many physiological processes, including neuronal plasticity and neurogenesis. In this work, we aimed to identify S-nitrosylation targets of NO that could participate in neurogenesis. In NSC, we identified a group of proteins oxidatively modified using complementary techniques of thiol redox proteomics. S-nitrosylation of some of these proteins was confirmed and validated in a seizure mouse model of hippocampal injury and in cultured hippocampal stem cells. The identified S-nitrosylated proteins are involved in the ERK/MAPK pathway and may be important targets of NO to enhance the proliferation of NSC.
  • Stimulation of neural stem cell proliferation by inhibition of phosphodiesterase 5
    Publication . Santos, Ana Isabel; Carreira, Bruno P.; Nobre, Rui Jorge; Carvalho, Caetana M.; Araújo, Inês
    The involvement of nitric oxide (NO) and cyclic GMP (cGMP) in neurogenesis has been progressively unmasked over the last decade. Phosphodiesterase 5 (PDE5) specifically degrades cGMP and is highly abundant in the mammalian brain. Inhibition of cGMP hydrolysis by blocking PDE5 is a possible strategy to enhance the first step of neurogenesis, proliferation of neural stem cells (NSC). In this work, we have studied the effect on cell proliferation of 3 inhibitors with different selectivity and potency for PDE5, T0156, sildenafil, and zaprinast, using subventricular zone-(SVZ-) derived NSC cultures. We observed that a short-(6 h) or a long-term (24 h) treatment with PDE5 inhibitors increased SVZ-derived NSC proliferation. Cell proliferation induced by PDE5 inhibitors was dependent on the activation of the mitogen-activated protein kinase (MAPK) and was abolished by inhibitors of MAPK signaling, soluble guanylyl cyclase, and protein kinase G. Moreover, sildenafil neither activated ERK1/2 nor altered p27(Kip1) levels, suggesting the involvement of pathways different from those activated by T0156 or zaprinast. In agreement with the present results, PDE5 inhibitors may be an interesting therapeutic approach for enhancing the proliferation stage of adult neurogenesis.
  • S-nitrosation and neuronal plasticity
    Publication . Santos, Ana Isabel; Martinez-Ruiz, A.; Araújo, Inês
    Nitric oxide (NO) has long been recognized as a multifaceted participant in brain physiology. Despite the knowledge that was gathered over many years regarding the contribution of NO to neuronal plasticity, for example the ability of the brain to change in response to new stimuli, only in recent years have we begun to understand how NO acts on the molecular and cellular level to orchestrate such important phenomena as synaptic plasticity (modification of the strength of existing synapses) or the formation of new synapses (synaptogenesis) and new neurons (neurogenesis). Post-translational modification of proteins by NO derivatives or reactive nitrogen species is a non-classical mechanism for signalling by NO. S-nitrosation is a reversible post-translational modification of thiol groups (mainly on cysteines) that may result in a change of function of the modified protein. S-nitrosation of key target proteins has emerged as a main regulatory mechanism by which NO can influence several levels of brain plasticity, which are reviewed in this work. Understanding how S-nitrosation contributes to neural plasticity can help us to better understand the physiology of these processes, and to better address pathological changes in plasticity that are involved in the pathophysiology of several neurological diseases. Linked ArticlesThis article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit
  • Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling
    Publication . Carreira, Bruno P.; Morte, Maria I.; Santos, Ana I.; Lourenco, Ana S.; Ambrosio, Antonio F.; Carvalho, Caetana M.; Araújo, Inês
    Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (lipopolysaccharide plus IFN-gamma), using a culture system of subventricular zone (SVZ)-derived NSCs mixed with microglia cells obtained from wild-type mice (iNOS(+/+)) or from iNOS knockout mice (iNOS(-/-)). We found an impairment of NSC cell proliferation in iNOS(+/+) mixed cultures, which was not observed in iNOS(-/-) mixed cultures. Furthermore, the increased release of NO by activated iNOS(+/+) microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite (ONOO-), or using the ONOO- degradation catalyst FeTMPyP cell proliferation and ERK signaling were restored to basal levels in iNOS(+/+) mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 mu M), for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the ERK/MAPK pathway.
  • Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures
    Publication . Carreira, Bruno P.; Santos, Daniela F.; Santos, Ana Isabel; Carvalho, Caetana M.; Araújo, Inês
    Hippocampal neurogenesis is changed by brain injury. When neuroinflammation accompanies injury, activation of resident microglial cells promotes the release of inflammatory cytokines and reactive oxygen/nitrogen species like nitric oxide (NO). In these conditions, NO promotes proliferation of neural stem cells (NSC) in the hippocampus. However, little is known about the role of NO in the survival and differentiation of newborn cells in the injured dentate gyrus. Here we investigated the role of NO following seizures in the regulation of proliferation, migration, differentiation, and survival of NSC in the hippocampus using the kainic acid (KA) induced seizuremouse model. We show that NO increased the proliferation of NSC and the number of neuroblasts following seizures but was detrimental to the survival of newborn neurons. NO was also required for the maintenance of long-term neuroinflammation. Taken together, our data show that NO positively contributes to the initial stages of neurogenesis following seizures but compromises survival of newborn neurons.