Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • A review of common parameters and descriptors used in studies of the impacts of heavy metal pollution on marine macroalgae: identification of knowledge gaps and future needs
    Publication . Costa, Giulia Burle; Koerich, Gabrielle; Ramos, Bruna de; Ramlov, Fernanda; Martínez-Crego, Begoña; Costa, Monya; Jesus, Dora; Santos, Rui; Horta Jr., Paulo A.
    This study presents a systematic review to assess the main similarities and gaps in efforts to evaluate the impacts of heavy metals on benthic marine seaweeds. A total of 91 studies were compiled, the main parameters (abiotic, biological, ecotoxicological, and heavy metals) and descriptors of which were evaluated by quantitative and qualitative analyses. Our results indicate the importance of diversifying searches by including different languages (i.e. English, Portuguese and Spanish). Most of the studies were field characterizations, with few abiotic parameters and/or seasonality evaluations being employed. In contrast, the assessment of ecotoxicological parameters was highly frequent, which seems incoherent considering the absence of data to support the use of these results in biomonitoring applications. The genera Sargassum, Ulva and Enteromorpha were widely studied worldwide, apart from a small fraction of studies assessing higher levels of biological organization. Moreover, the use of different parameters and descriptors by the evaluated studies precludes making conclusive or reliable comparisons. These findings highlight the importance of greater efforts to construct a concise baseline of knowledge using similar parameters so that global evaluations of the impacts of heavy metals on photosynthetic organisms can be undertaken.
  • Functional traits of ecosystem engineers as predictors of associated fauna
    Publication . Jiménez Herrero, Javier; Desiderato, Andrea; Vieira, Pedro Emanuel; Tavares, Ana Mafalda; Queiroga, Henrique; Santos, Rui
    The ongoing combination of global warming and increased anthropogenic pressure is causing latitudinal shifts in marine species, potentially impacting community composition, local richness, and marine trophic webs. This study investigates the factors influencing the distribution and diversity of intertidal seaweed and associated peracarid communities, including their functional traits, and explores various facets of beta diversity (taxonomic and functional). We hypothesize that: 1) abiotic factors such as temperature and anthropogenic pressure significantly influence seaweed distribution and diversity shifts, and 2) changes in seaweed functional diversity have an impact on the diversity and functioning of its associated peracarid communities. The sampling was conducted along a wide latitudinal gradient in the NE Atlantic (27(degrees)N - 65(degrees)N), encompassing three distinct ecoregions: Northern European coasts, the Iberian Peninsula, and Macaronesia. The identified seaweed and peracarid species were classified functionally, and taxonomic and functional diversity were analysed on a large geographic scale. The northern region exhibited large brown canopy seaweeds and epibiotic isopods, while Macaronesia featured small red, highly branched, and calcareous crust seaweeds with burrower and tubebuilding tanaids. The Iberian Peninsula acted as a transitional zone, showcasing a mix of green, red, and brown seaweeds, along with Amphipoda peracarids found across all ecoregions. Our findings underscore the impact of geographic distance on total beta diversity, revealing distinct seaweed and peracarid communities across spatial gradients. Environmental variables, particularly pH and maximum sea surface temperature, emerged as significant factors influencing beta diversity patterns of seaweeds, indicating the potential impact of acidification and heat waves on community composition. In addition, seaweed functional traits were shown to be significant in shaping the diversity and abundance of associated peracarid assemblages, impacting both taxonomic and functional beta diversity. These findings provide crucial insights into the factors influencing the biogeography and biodiversity dynamics of intertidal seaweeds and associated peracarids, offering essential implications for conservation and management strategies amid ongoing environmental changes.
  • Climate effects on belowground tea litter decomposition depend on ecosystem and organic matter types in global wetlands.
    Publication . Trevathan-Tackett, Stacey M.; Kepfer-Rojas, Sebastian; Malerba, Martino; Macreadie, Peter I.; Djukic, Ika; Zhao, Junbin; Young, Erica B.; York, Paul H.; Yeh, Shin-Cheng; Xiong, Yanmei; Winters, Gidon; Whitlock, Danielle; Weaver, Carolyn A.; Watson, Anne; Visby, Inger; Tylkowski, Jacek; Trethowan, Allison; Tiegs, Scott; Taylor, Ben; Szpikowski, Jozef; Szpikowska, Grażyna; Strickland, Victoria L.; Stivrins, Normunds; Sousa, Ana I.; Sinutok, Sutinee; Scheffel, Whitney A.; Santos, Rui; Sanderman, Jonathan; Sánchez-Carrillo, Salvador; Sanchez-Cabeza, Joan-Albert; Rymer, Krzysztof G.; Ruiz-Fernandez, Ana Carolina; Robroek, Bjorn J. M.; Roberts, Tessa; Ricart, Aurora M.; Reynolds, Laura K.; Rachlewicz, Grzegorz; Prathep, Anchana; Pinsonneault, Andrew J.; Pendall, Elise; Payne, Richard; Ozola, Ilze; Onufrock, Cody; Ola, Anne; Oberbauer, Steven F.; Numbere, Aroloye O.; Novak, Alyssa B.; Norkko, Joanna; Norkko, Alf; Mozdzer, Thomas J.; Morgan, Pam; Montemayor, Diana I.; Martin, Charles W.; Malone, Sparkle L.; Major, Maciej; Majewski, Mikołaj; Lundquist, Carolyn J.; Lovelock, Catherine E.; Liu, Songlin; Lin, Hsing-Juh; Lillebo, Ana; Li, Jinquan; Kominoski, John S.; Khuroo, Anzar Ahmad; Kelleway, Jeffrey J.; Jinks, Kristin I.; Jerónimo, Daniel; Janousek, Christopher; Jackson, Emma L.; Iribarne, Oscar; Hanley, Torrance; Hamid, Maroof; Gupta, Arjun; Guariento, Rafael D.; Grudzinska, Ieva; da Rocha Gripp, Anderson; González Sagrario, María A.; Garrison, Laura M.; Gagnon, Karine; Gacia, Esperança; Fusi, Marco; Farrington, Lachlan; Farmer, Jenny; Esteves, Francisco de Assis; Escapa, Mauricio; Domańska, Monika; Dias, André T. C.; Barrena de los Santos, Carmen; Daffonchio, Daniele; Czyryca, Paweł M.; Connolly, Rod M.; Cobb, Alexander; Chudzińska, Maria; Christiaen, Bart; Chifflard, Peter; Castelar, Sara; Carneiro, Luciana S.; Cardoso-Mohedano, José Gilberto; Camden, Megan; Caliman, Adriano; Bulmer, Richard H.; Bowen, Jennifer; Boström, Christoffer; Bernal, Susana; Berges, John A.; Benavides, Juan C.; Barry, Savanna C.; Alatalo, Juha M.; Al-Haj, Alia N.; Adame, Maria Fernanda
    Patchy global data on belowground litter decomposition dynamics limit our capacity to discern the drivers of carbon preservation and storage across inland and coastal wetlands. We performed a global, multiyear study in over 180 wetlands across 28 countries and 8 macroclimates using standardized litter as measures of "recalcitrant" (rooibos tea) and "labile" (green tea) organic matter (OM) decomposition. Freshwater wetlands and tidal marshes had the highest tea mass remaining, indicating a greater potential for carbon preservation in these ecosystems. Recalcitrant OM decomposition increased with elevated temperatures throughout the decay period, e.g., increase from 10 to 20 °C corresponded to a 1.46-fold increase in the recalcitrant OM decay rate constant. The effect of elevated temperature on labile OM breakdown was ecosystem-dependent, with tidally influenced wetlands showing limited effects of temperature compared with freshwater wetlands. Based on climatic projections, by 2050 wetland decay constants will increase by 1.8% for labile and 3.1% for recalcitrant OM. Our study highlights the potential for reduction in belowground OM in coastal and inland wetlands under increased warming, but the extent and direction of this effect at a large scale is dependent on ecosystem and OM characteristics. Understanding local versus global drivers is necessary to resolve ecosystem influences on carbon preservation in wetlands.